Introduction

These simulations are important because they measure the energy to shear planes. When a plane is found to have a minimum energy, it can be considered a slip plane. Along these slip planes, dislocations can move with ease. The easier dislocations can move, the more ductile the material will be. The plane examined in this assignment was {110}. This plane is a natural slip plane for BCC iron.

Results
 
0 0.405879 0.811759 1.217638 1.623517 2.029396 2.435276 2.841155 3.247034 3.652914 4.058793
0 5.86E-14 2.77E-03 1.16E-02 4.31E-02 5.03E-02 8.26E-02 5.03E-02 4.31E-02 1.16E-02 2.77E-03 5.86E-14
0.287 3.52E-03 6.27E-03 1.50E-02 3.05E-02 6.29E-02 6.02E-02 6.29E-02 3.05E-02 1.50E-02 6.27E-03 3.52E-03
0.574 1.44E-02 1.71E-02 2.58E-02 4.44E-02 3.59E-02 3.32E-02 3.59E-02 4.44E-02 2.58E-02 1.71E-02 1.44E-02
0.861 3.32E-02 3.59E-02 4.44E-02 2.58E-02 1.71E-02 1.44E-02 1.71E-02 2.58E-02 4.44E-02 3.59E-02 3.32E-02
1.148 6.02E-02 6.29E-02 3.05E-02 1.50E-02 6.27E-03 3.52E-03 6.27E-03 1.50E-02 3.05E-02 6.29E-02 6.02E-02
1.435 8.26E-02 5.03E-02 2.71E-02 1.30E-03 2.77E-03 5.86E-14 2.77E-03 1.30E-03 2.71E-02 5.03E-02 8.26E-02
1.722 6.02E-02 6.29E-02 3.05E-02 1.50E-02 6.27E-03 3.52E-03 6.27E-03 1.50E-02 3.05E-02 6.29E-02 6.02E-02
2.009 3.32E-02 3.59E-02 4.44E-02 2.58E-02 1.71E-02 1.44E-02 1.71E-02 2.58E-02 4.44E-02 3.59E-02 3.32E-02
2.296 1.44E-02 1.71E-02 2.58E-02 4.44E-02 3.59E-02 3.32E-02 3.59E-02 4.44E-02 2.58E-02 1.71E-02 1.44E-02
2.583 3.52E-03 6.27E-03 1.50E-02 3.05E-02 6.29E-02 6.02E-02 6.29E-02 3.05E-02 1.50E-02 6.20E-03 3.52E-03
2.87 5.86E-14 2.77E-03 1.16E-02 4.31E-02 5.03E-02 8.26E-02 5.03E-02 4.31E-02 1.16E-02 2.77E-03 5.86E-14
Table 1 A table containing the energy measurements form the simulation. The first column represents the change in the z shear displacement (angstroms), ranges from zero to the materials lattice parameter. The first row represents the change in the x shear displacement (angstroms), ranges from zero to square-root of two times the lattice parameter. Finally, all of the cells within the first row and column are the energies of the planar fault.
 


Figure 1 A contour plot of the data in Table 1. Red represents
low values and blue represents higher values. This plot was
created with Mathematica.
 


Figure 2 A three dimensional surface plot of the data in
Table 1. This plot was created by Mathematica.

    If our values are compared to values in current literature, such as Surface Science. It can be shown that our peak value of surface energy, 0.0826 J/m2, is an order of magnitude lower than the published value of 0.801 J/m2, for the {110} plane and the <110> ledge.
 

References

Callister, William D., Jr. Materials Science and Engineering: an introduction. 3rd ed. John Wiley & Sons: New York, 1994.

Farkas, Diana, et al. "Atomistic Structure of Stepped Surfaces", Surface Science. Vol. 360, p. 282-288, 1996.

Kalpakjian, Serope Manufacturing Processes for Engineering Materials. 3rd ed. Addison Wesley Longman, Inc.: Menlo Park, CA, 1997



Created by:M. McMurtry for MSE 4984