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A simple derivation is given to arrive at equations for finding the directions of sound
beams in crystals; reflection from the free face is considered. The possibilities of
using the shadow method of visualizing acoustic fields and muliiply reflected pulse
techniques are demonstrated as methods for the experimental observation of beams
in crystals, Numerical calculations of the beam directions in quartz yield excellent

agreement with experiment,

As is generally known, when electromagnetic
waves propagate in a crystal the direction of energy
transfer (beam) does not in general coincide with the
wave vector, A similar effect is seen in the case of
ultrasonic waves propagating in an elastically aniso-
tropic medium.

The most general approach to determining the
directions of ultrasonic beams is basically to determine
the group velocity [11, The group velocity vector
specifies the direction of energy transfer and is equal
to

vy = 0w /dq, &)
where w is the frequency and q is the wave vector,

The absolute value of q in the crystal depends on
the directions of propagation and polarization of the
elastic wave, Writing the equation for the wave vector
surface in the form F (qi, w) = 0 and considering w to
be a function of q; , we have
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Then the components of the beam velocity vector are
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Since the vector AF [dq is perpendicular to the sur-
face F =0, it is evident that the direction of the sound
beam will be given normal to the corresponding point
of the wave vector surface,

For our later computations, we will need to ascer-
tain the form of F (q;, w)., Consider the general case
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of ultrasonic propagation in a piezoelectric crystal
(with restriction to the linear piezoeffect), The desired
equations relating the elastic and electric variables are
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Here U; represents the components of the displacement
vector in the elastic wave, u;,, the components of the
strain tensor, D_ the components of the induction
vector, E_ the components of the electric field, ciEk im
the elastic moduli for steady fields, &, ik the piezo-
electric constants, ¢! the dielectric permeabilities
at constant strain, p the crystal density.

These equations should be solved in conjunction
with the additional provision that div D =0 and rotE =
=0. If we assume as the solution a plane monochro-
matic wave, then for the components of the displace-
ment vector we obtain from (3) (see [1]) the set of
equations
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Here qQ =q-1, 4y is the direction cosine of the wave
vector, In the interest of space, we introduce the nota-
tion
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The system (4) has nonzero values provided
|p @2 dim — i | = 0. {6)

After several algebraic manipulations, Eq, (6) becomes,
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where B; =-1~%“2;3, By = 1}1323, By = BI‘I: .

Equations (6) and (7) represent two different ways
of writing the wave vector surface equation, Given the
direction of propagation, from these we can find three
values of q corresponding in general to quasi-longitudi-
nal and quasi-transverse waves, * Consequently, the
set q forms three wave vector surfaces,

In practical problems it is often convenient to apply
the concept of the normal velocity v, = w/q, which de-
termines the velocity of the wave front (this quantity is
the one measured in determining the velocity of ultra-
sound), The equation of the normal velocity surface is
obtained from (6) or (7) by substituting therein
@ — Uy, Tip— Qim> Br=>otp, subject to the
following obvious relations:

Qim = qlz'r"’“]. (8)
ah:‘;_z'ﬁk I

The normal velocity and wave vector surfaces are
mutually inverse and are readily transformed one into
the other. i

As is evident from Eq, (5), the velocity of sound
in the crystal depends on the presence of a piezo-
electric correction. Thus, for example, in quartz the
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modulus is equal to €y + —F— = ¢y for the
e
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case of longitudinal waves propagating along the X

. axis, whereas transverse waves propagating along the
Z axis are governed by ¢ gggp (since eggy =9 = 0), In
the first case the field of piezoelectric reaction is
directed aleng the wave, In the second it is perpendi-
cular to it; the effective elastic moduli in both instances
therefore correspond to different electric conditions,
either constant induction or constant field,

The direction cosines py of the displacement
vectors of each wave are found from Eq, (4) with the
substitution U, = py,* Us

(pr0® djm — Lim) pm = 0.

The solution of this equation can be written in the form

L
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where A follows from the condition 2 o =1.

k=1
The displacement vectors of all three waves are mutually
orthogonal,

On the basis of the above relations we readily obtain
the final expressions for determining the directions of
sound beams in a crystal, Making use of Eq. (7), we
find
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For practical calculations, it is convenient to use,
instead of qj, the direction cosines of the wave vector,
After relatively straightforward wansformations of the
above equations, taking (8) and (9) into account, we
arrive at
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The velocity of sound along the beam becomes
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and the direction cosines of the beam vector are
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*In crystals having different symmetry there are the

so-called specific directions by which only “pure® waves
are propagated (the direction of the displacement in
each of the three waves is parallel or perpendicular to
the wave vector) [2], They can be calculated for every
crystal and are determined by the stipulation that one
of the displacement vectors is proportional to the wave
vector,
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On the basis of (10), making use of identity transforma-
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1t follows from Egs. (13) and (11) that
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Figure 1 illustrates the directions of (n) and v
with respect to the wave vector surface, At each instant
the front of a wave propagating in the crystal will be
tangent to the beam velocity surface. In other words,
the beam surface itself will be the envelope of plane
wave fronts, This rule, which is known from the optics
of anisotropic media [3], can be used for a graphical de-
termination of the beam directions based on sectional
curves of the normal velocity surface in the elastic
group symmetry planes of the crystal (4],

We note that the propagation of sound beams in
crystals was investigated previously by Musgrave [51.
However, the method used in our paper to determine
vy and x; is far simpler, and the final expressions are
obtained in a form suitable for practical calculations,

We will consider briefly the problem of reflection
of sound waves propagating inside a crystal away from
the face, As the reflecting surface we consider the
plane x; = 0 and assume that it is in contact with air,
thus permitring use of the boundary conditions for a
free surface as a very good approximation:

Gip N = 0. (14)
1 /90U, ou .
Here Gip = Cipim* -f(— -— |, the piezo-
i iklm* 5 arm + a”’z ) P

electric effect being neglected, and n; is the projection
of the outward normal on the axis X;, Representng the
incident and reflected wave in the form U;-exp i (qr —
ot), substituting this into (14) and dropping the time
factor, we obtain

Cinm - (g US + gf - Ul -ear

+ D\ (gh-Ul 4 ql-Uh)-e’ ] =0.  as)
i

The superscript 0 refers to the incident wave, j to the
reflected waves,

The condition (15) must be satisfied identity-wise
for any polnt of the plane x; =0, whence follows the

equality of the tangential components of the wave
vectors of the incident and each reflected wave:

g =gk for Kk *i. (18
The vector qJ lies in the plane of incidence, Using o
to denote the angle between the normal at the point of
incidence and the wave vector, we have ¢ sin a’

= ¢/ sin @f, which is equivalent to the relation
sinad _ sin a"“
]
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since )= f (af), the latter expression determines the
direction of the reflected waves inexplicitly, Specifi-
cally, if the wave normal is perpendicular to the
refleciing surface, the sound beam must be reflected

in the direction of incidence (but the beam irself need
not be perpendicular to the sutface), It is necessarily
pointed out in addition that in general the reflected
beam does not lie in the plane of incidence unless the
latter is simultaneously a symmetry plane of the crystal
itself,

The set of Egs. (15), after dropping the phase multi-
pliers, gives the relation between the amplitudes of the
incident and reflected waves, i,e,, the values of the
reflection coefficients, The condition (16) is con-
veniently used to determine the directions of the re--
flected waves graphically, on the basis of cross sections
of the wave vectors,

We consider finally the possibilities of experimentally
observing sound beams. For optically transparent crystals,
quartz in particular, we applied the shadow method of
visualizing sound fields (Toepler method). We will con-
sider the theory of the method in application to crystals
of any symmetry,

We will adopt as our coordinate system the prin-
cipal axes of the crystal dielectric tensor e jy; it thus
cannot coincide with the crystallographic axes, In the
absence of sound the velocity of light along any line is
determined by the Fresnel ellipse

{0)

e Zi-xp = 1. amn

When the crystal is strained «j}, has the form [1]

Eip = BS;') + @inim Uimy (18)

where a;,. .. is the tensor optical elastic constant,
which in general is asymmetric with respect to inter-
changeability of the subscript pairs ik and Im, i.e.,
Qigim =F Qimix.  The zero components of 2 im
correspond to the c;y., of the given crystallographic
system,

Under the influence of a sound wave the index of
refraction (velocity of light) varies periodically, It is
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evident from (17) and (18) that this variation is connect-
ed both with rotation and with a change in length of
the Fresnel ellipsoid. Let a beam of light propagate

tg20 =

along one axis, say X, Straightforward computations
give the angle of rotation about the axis,

23tm * Yim (19)

and the varlations in effective values of €iks
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Completely analogous expressionscan be written
down for the cases that arise when the light beam pro-
pagates along the axes Y and Z.

Analysis of the expressions (19) and (20) reveals
that longitudinal, quasi-longitudinal, and quasi-periodic
waves always elicit a change in the velocity of light and
should therefore be observable by the shadow method,
Transverse waves frequently in certain instances cannot
cause a change in the velocity of light, their ability to
do so depending on the symmetry of the crystal and
direction of propagation of the light beam (direction of
observation), This is clarified in the example of quartz,
whose principal dielectric axes of course correspond to

(‘1(3%) + @asim Uim)1® + 4 (G281m - ulm)2} .

the crystallographic axes, Let a transverse sound wave
propagate along Z, the light beam along X, If the dis-
placement vector of the sound wave coincides with axis
Y, then @gp05 5= 0, a4453 5= 0 so that, consequently,
€ys == &l0), £33 5= &I,  For a wave with a displace-
ment along X, Q2213 = @3313 = Q33 = O and
Eogy = &Y, 855 = ). Consequently, only the first
wave will be observed, It can similarly be shown that
both such waves can be observed when the light beam
is directed along the axis Y, In this sense, the possibili-
ties afforded by the shadow method are somewhat
different for crystals than those for isotropic media,
where it is impossible to observe a transverse wave with

Crystal, Velocity | Direction of Beam Beam de-
- Wave . i
axis ¥ps g(m“)/ ;lgc displ, vector direction g;‘;;l:ln from
1
longitudinal 5.7 ;=1 pa=ps=0| M=1; Ag==A3=0 0°
X transverse 5.0 1=0; pp=0.52; | Ay=1; ha=As=0 0°
P3= -—0 8
transverse 3.36 ! p1=0; pa=0.85 | M=1; Ag=Ag=0 G
Ps= 0.52
quasi- 6.01 | p1==0; pa=0.91 | Ay =0; A =0.92; 23°
longitudinal ps=0.42  h=10.39
Y transverse 3.92 {pi=1; pa=p3=0{hy=0; Aa=0.92 | —23°
Az =—0.39
uasi-transverse 4.35 n= 0; Pa= 0.42; }v]_ = 0; hﬂ = 0.91; —24°
: Ps = —0.91 Ay = —0.42
longitudinal 6.32 Pe=0; pp=1 |[M=h=0; Ag=1 0°
z ansverse 4.68 | p1=1; pp=ps=0| by=0; hy=—0.29,] —17°
A3 =10.96
transverse 4.68 | pp=ps=0; po=1 A1 =0; Aa =0.29; 17°
[ A.s = 0. 96
Cik* 1071 dyne/cm®. ¢y =87.6; cgg=106; cyy = 58.0; Cgs = 40.7;
Ciz =6.2; ¢y = — 17.4; c3=11,9,
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a displacement vector that coincides with the direction
of the light beam [6].

The accompanying table lists the calculated angles
of deflection of the beams from the normals of waves
propagating along the crystallographic axes in quartz,
The elastic moduli are found from the measured (using
pulse techniques) velocities of sound along the axes; T
the value of ¢y g is borrowed from [7]. Deflection of the

beammns from normal occurs for all three waves propagating

along the axis Y, for transverse waves along Z, and not
at all along X,

Figures 2-5 are photographs, obtained by the shadow
method at 25 Mc, of sound beams in quartz crystal, The
sample dimensions were (¥ =16 mm, 1, = I, =32 mm,
the direction of observation was aligned with the axis X,
Figure 2 is for a longitudinal wave along Z, Fig, 3 for
a quasi-longitudinal wave along Y; it is seen that the
direction of the reflected and incident beams coincide;
Fig. 4 1s for simultaneous excitation of a quasi-longitudi-
nal and quasi-transverse wave along Y, Fig. 5 for a
quasi-transverse wave reflected from the lateral faces
of the sample. Since the wave front is specified by the
radiating surface of the crystal, the angles of beam de-
flection from the normal to the surface in Figs. 3 and 4
correspond to the angles of deflection from the wave
normal; their values are very near the analytic,

The distinguishing features of ultrasonic beams
propagating in crystals are also brought out by the
application of pulse techniques, usually in the study of
sound absorption, To obtain a sequence of mulriple re~
flections between opposite faces, the sound beam should
net be allowed to be cut short by the sides of the sample,
Thus, in quartz, for the case of propagation along Y the
sound beams corresponding to transverse and quasi-
longitudinal waves are deflected in different directions

Fig, 2.

Fig, 4,

in the plane YZ, It is therefore possiBle to observe re-
flected pulses of each wave only when the radiator-
recelver system is situated on a definite portion of the
crystal surface. The numbers 1-2 in Fig. 6 outline the
interval where only a transverse wave can be “excited,”
3-4 only a quasi-longitudinal wave. On the interval
2-3 pulses of both types are detected, Oscillograms
appropriate for these cases are shown in Figs, 7a, 7b
and Tc (sample dimensions: Iy =16 mm, I =1, =
=32 mm, f =400 Mc). The excitation and reception

T As noted above, the values of ¢y thus found corre-
spond to different electric conditions; the elastic moduli
listed in the table correspond to ¢, cD D, oE, oE,
D D. : : *
ch=eh, ch=ch: because the piezoelectric correction

is small this difference was ignored in the calculations,



PROPAGATION AND REFLECTION OF ULTRASONIC BEAMS 1

2

Fig. 6.

of superhigh ultrasonic frequencies were accomplished
by a method which we described in [8].

In optically nontransparent crystals the point of
emergence of the sound beams on the surface and, con-
sequently, the beam direction are conveniently deter-
mined by means of a small rubber damping probe.
Applied to the surface at specific points, it aids in ob-
serving the reduction in pulse amplitude due to the
partial transmission of acoustic energy into the damping
probe, We employed this technique for various single
crystals at frequencies up to 2+ 109 cps.
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