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INTRODUCTION

Within the last ten years there has been a renewed interest in
simulation of stress wave propagation because of the availability of fast
supercomputers with large memory capabilities [1,2,3]. Only recently
have a few investigators [4,5] applied these simulations to problems
where elastic anisotropy was included as a major factor. The massive
output of results from these simulations, together with the added
complexity of coupled phenomena that uniquely exist for a given
anisotropy, defies intuition. To grasp the significance of these
simulations requires scientific visualization [6] of these complex
physical phenomena. Such visualizations often require a movie format to
better understand the physics of particular problems [7]. In this study
we simulated the experimental measurement of a shift in the quasi-
transverse bulk wave propagation in an off-axis unidirectional
graphite/epoxy composite in plane strain [8]. The purpose of the
simulation was to aid the nondestructive evaluation engineer in designing
an acoustic array to improve the measurement of the shift in the QT wave
propagation direction [9]. Previously a finite element model [5] was
used to simulate this measurement. In this study we demonstrate the
advantages of using a finite difference model to simulate this experiment
and, with special visual aids, observe the physics.

Finite Difference Method

We modified the finite difference method of Bayliss, et al. [10] to
include elastic anisotropy with nonreflecting (absorbing) or reflecting
boundary conditions from either a rigid or stress-free planar boundary.
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The equations of motion are written below as a first order hyperbolic
system of five partial differential equations where the unknown
velocities (0,V) and stresses (oyy, Iyy, ”xy) are differentiated only
once with respect to space and time,
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where Cjs, 1 = 1,2,6 are contracted Vogt notation of the general
stiffness tensor Cjjk]. The advantage of this formulation is the absence
of mixed second order derivatives (8%/9xdy) with only first order
derivatives so that the method of characteristics can be used to
construct the necessary boundary conditions. The numerical method
described in detail in reference 10 is accurate to fourth order in space
and accurate to second order in time, and uses a splitting method which
is well suited to vector computers. Here we will expand only on the
approximation of the boundary conditions.

Boundary Conditions

For calculating the boundary conditions, we rewrite the equations of
motion, (1), in matrix/vector form,

aw aw dw
—+A—+B—=0 (2)
at ax ay

where wl = (4,V, oxx, Txy ”yy) and the matrices A and B are constant.

The domain is a rectangle in (x,y) space. Consider the boundary
condition along the left side, x = 0; see Figure 1. Let P be the matrix
of eigenvectors of the A matrix such that

p-' AP = D, (3)

where D is the diagonal matrix of eigenvalues. The equations of motion,
(2), can be written in terms of a transformed set of wvariables
(characteristic variables), v = P !w, by the following:

aw aw aw
P°! — + PT1APP"! — 4+ P"1 — = 0, (4)
at ax dy
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Figure 1. Definition of finite difference mesh.

or in terms of v,

dv dv dv
— +D—+B — = 0. (5)
at ax ay

The variables vj correspond to the eignevalues of D. Positive
eigen-values are "inflow" characteristic variables and negative
eigenvalues define "outflow" characteristic variables. Along these
boundaries Bayliss [10] extrapolates the solution to the two mesh points
adjacent to the computational mesh using the relations:

fny1 = 4fn - 6f4.1 + 4fq.0 - fh.3, 6
fnyp = 4fp41 - 6 + 4E5.q - £h00,

so that the fourth order difference scheme can be computed over the
entire computational mesh including the boundary points.

Once the difference scheme has advanced the solution to the next
time step over the entire computational mesh, then the boundary values
are corrected using the characteristic linear combinations acquired from
the diagonalization of the equations of motion in the direction mormal to
the boundary. If
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is an "outflow" characteristic, then its value is calculated from the
finite difference approximation, (6). Denote the boundary values
computed at the new time step by w*l | The final boundary values, which
we denote by wn+1, should give the following relation:

5 5
= pyow™ -z W (8)
FIRTES B jo1 i

for the outflow linear combination; that is, for each value of i
corresponding to an outflow characteristic.
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At each boundary there are three outflow variables, thus three
equations of the form of (8). The inflow conditions give two additional
equations for the values of w1 at the boundary. In summary, there are
five equations for the five unknown w! to give the boundary values.

Solution and Mesh Definition

The solution of equations, (1) with appropriate boundary conditions
proceeded as outlined above and in reference [10]. Nonreflecting
boundaries were assigned at x=0, x=L, and y=B. At the boundary y-=0 a
stress wave was launched by prescribing velocities ({,v) that would
simulate the response of an idealized longitudinal transducer vibrating
sinusoidally. The transducer displacement field was idealized as a
spatial Gaussian distribution over 101 mesh points along y=0 with a 25
mesh point approximation for one wavelength. The wave period was divided
into 160 time steps. The elastic stiffnesses, Cjj, were calculated for
fiber orientations from 6 = 0° to 8 = 90% in increments of 10°. These
stiffnesses were identical to those reported in Reference 5.

For an off-axis orientation, 0° < @ < 90°, the conditions prescribed
above resulted in the simultaneous generation of quasilongitudinal (QL)
and quasitransverse (QT) waves that propagated along deviated paths.

This particular problem was chosen to verify the accuracy of the
simulation to reproduce the deviated propagation directions predicted by
plane wave theory. In addition, this problem was also chosen to verify
the measurement of the deviated QT wave as outlined in reference [8].

Because of the deviated propagation directions of the QL and QT
waves, the position of the source along y=0 and the mesh dimensions were
sized to avoid propagation of waves into cornmers. For all cases of fiber
orientations a mesh size of 451 points along the x-coordinate and 126
points along the y-coordinate resulted in stable solutions where QL and
QT waves remained sufficiently far from the mesh corners. To verify the
accuracy of these solutions, larger grids (1001 x 161) with 40 points per
wavelength and 240 time steps per period yielded results with only small
improvements. Total solution time was established when the slower moving
QT wave arrived at the far boundary y=B. The standard mesh (451 x 126)
required 20 minutes of computation time and 200000 single precision words
of memory compared to 2.2 hours and 3.2 million words of memory for the
finite element solution in reference 5.

EXACT SOLUTION

An exact theoretical solution is necessary to verify the accuracy of
the simulation. The exact solutions for plane stress and plane strain
are given in reference 5, but here we have considered only plane strain
and list only the most relevant equations.
Christoffel’s Solution

Stress-wave deformation fields in anisotropic media can be

approximated by plane wave solutions to the elastic-wave equation. This
simplification leads to Christoffel equation [11]:

(cijkﬂ vijvk - pv285p) pp = 0 (9)

where Cjjkg is the elastic-stiffness tensor, vj the wave vector, p the
mass density, v the wave velocity (eigenvalue), §jp the Kronecker delta,
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and pp the direction of particle vibration (eigenvector). Solutions in
the principal material planes are given in [12], where it is shown that
the particle motion is confined to the principal material plane and
decouples from the out-of-plane vibrations. Hence the plane strain
solutions and bulk wave solutions of Equation (9) are identical when
confined to principal material planes. For plane stress, the solution of
(9) is modified by reducing the stiffness, see [5].

Flux Deviation

Musgrave {11] demonstrated graphically how the propagation direction
can deviate from the wave vector. This direction is called the energy
flux deviation vector,

Bj = -Cijke uk, 2 Ui, (10)

where uj is the displacement vector for plane wave. The velocity of
propagation in the direction of E; is called the group velocity. For
anisotropic materials Ej deviates from vi{ by an angle, A = cos 'vjEj.

RESULTS AND DISCUSSION

The finite difference solution of (1) for the region described in
Figure 1 was obtained for fiber orientations from 8=0 to 8=90° in
increments of 10°. Results are plotted in Figure 2 and compared with the
finite element solution from reference 9 and the exact solution of (10).
Improved results from the finite difference solution are observed over
the range 0° < @ < 70%, This improvement was accomplished not only by
increasing the number of time steps per period and increasing the number
of mesh points per wavelength, but mostly by preferentially launching
either the QT or QL wave by prescribing the correct ratio of longitudinal
to transverse particle motion predicted by the eigenvector, py, solution
to the Christoffel’s equation (9). This approach is shown more clearly
with visual aids in Figures 3 and 4.
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Figure 2. Comparison of finite difference model, (F.D.M.), finite
element model, (F.E.M.) and exact solution in plane strain,
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Figure 3. a) Gray scale representation of u displacements for the QL

and QT waves propagating in unidirectional graphite/epoxy
composite in plane strain at § = 50°; b) preferential
launching of the QT wave; c) preferential launching of the QL
wave.

In Figure 3a we show a gray scale representation of the u
displacements generated by a simulated longitudinal transducer in a
unidirectional graphite/epoxy composite whose fiber axis is oriented at
6~50° from the y-axis. At this orientation, theory predicts equal u and
v displacements for both QT and QL waves and both waves are well
separated. Because both waves have a v component of displacement along
the y-axis, the longitudinal transducer will generate both waves. If,
however, the ratio of longitudinal to transverse wave motion generated
along the boundary, y=0, is equivalent to the eigenvector, Py,
corresponding to the QT eigenvalue, then only the QT wave will be
generated (see Figure 3b). Similarly only the QL wave may be generated
by its unique eigenvector. Obviously, this technique can be used to
separate the QT and QL waves, at the small angles of 6, where they would
otherwise interfere.

In Figures 4a and 4b we show how the isolation of the QT wave can
also be used to improve the measurement proposed in reference 8. The
slower moving QT wave (lower right) and the faster moving QL wave (upper
left), shown in Figure 4a as a displaced out-of-plane shaded surface,
were generated simultaneously from the same unipolar pulse. Here the
objective was to simulate and measure the propagation direction of the QT
wave by using a linear array of acoustic transducers on the reflecting
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Figure 4. a) In-plane v-displacements for QL and QT waves
visualized as shaded-out-of-plane surfaces where the
wave shape of the QT wave is measured by the acoustic
array with double peaks; b) preferential launching of
the QT wave where the shape of the QT wave measured by
the same acoustic array shows no double peaks and the
white arrow points to where the QL wave has been
eliminated.

boundary. Because the angle of propagation, and not simply the QT wave
arrival time is measured, it is necessary to measure the wave shape.
This measurement gave peculiar multiple peaks whose physical origin was
unexplained. A simulation and visualization in a movie format [7]
clearly showed that the physical origin of these multiple peaks was the
generation of "wakes" from the faster moving QL wave. Preferential
launching of the QT wave (see Figure 4b), with its unique eigenvector,
eliminated the QL wave and its wakes; this suggested that an improved
measurement of the direction of propagation of the QT wave was physically
possible if a transducer could be designed to reproduce the eigenvector
ratio of longitudinal to transverse displacements. Possibly a specially
cut quartz transducer would satisfy these requirements.
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CONCLUSIONS

A simulation that used the finite difference solution was less
stable than the finite element solution near boundaries but was much more
accurate, required ten times less memory, and was 66 times faster. Both
numerical methods were simple programs that did not require extensive
experience to implement., The visualization of the simulation results
provided the necessary insight to understand the physical origin of the
experimental anomalies. Visualization of the simulation results,
together with theoretical predictions, suggest a solution that would
remove the anomalies by preferentially generating the QT wave with its
unique eigenvector. Together with experiment and theory, we demonstrated
how numerical simulation and visualization was used to better understand
and improve measurements by an existing NDE method.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to Precision Visuals
Inc. for providing the visual aid software and Mike Maish, Dave Lovering,
and Sean Coleman of NIST for their network and system administration
support.

REFERENCES

1. R. Ludwig and W. Lord, Materials Evaluation 46, 108 (1988)

2 Z. You, W. Lord, and R Ludwig, in
Qggn;lgﬁﬁi_g_HDE edited by D. 0. Thompson and D. E. Chimenti
(Plenum Press, New York, 1988), Vol. 7A, pp. 23-30.

3, N. Saffari and L. J. Bond, J. Nondestructive Evaluation 6, 1
(1987).

4. J. A. G. Temple, J. Phys. D: Apl Phys 21, 859 (1988).

5. R. D. Kriz and P. R. Heyliger, in i
Quantitative NDE, edited by D. 0. Thompson and D. E. Chimenti
(Plenum Press, New York, 1989), Vol. 8A, pp. 141-148.

6. B. H. McCormick, T. A. Defanti, and M. D. Brown, "Visualization in
Scientific Computing," National Science Foundation Report prepared
under Grant ASC-8712231, July 1987.

7. R. D. Kriz, "Movies Reveal Secrets of Materials", NIST Research
Reports, NIST-STP765, NIST, Gaithersburg, MD 20899.

8. R. D. Krix, "Systems for Monitoring Changes in Elastic Stiffness
in Composite Materials," United States patent no. 4,499,770 (Feb.
19, 1985).

9. D. W Fitting, R. D Krlz, and A. V, Clark, Jr., in Review of
, edited by D. O. Thompson and D. E.

Chimenti (Plenum Press, New York, 1989), Vol. 8B, pp. 1497-1504.

10. A. Bayliss, K. E. Jordan, B. J. LeMesurier, and E. Turkel,
Bulletin of the Seismological Society of America, Vol. 76, No. 4,
pp. 1115-1132, August 1986,

11. M. J. P. Musgrave, Crystal Acoustics (Holden-Day, San Francisco,
1970).

12 R D. Krlz and H. M. Ledbetter, in Recent Advances in Composites

, edited by J. R, Vinson and M. Taya

(American Society for Testing and Materials, Philadelphia, 198),
pp. 661-675.

132



