Krawitz: Stress tensor profile: A1-B1-E1-C1 AW, Set 1 ______________________________________________________ determination of eigenvalues by jacobi's method, where n = 3 itmax = 50 eps1 = 0.100E-09 eps2 = 0.100E-09 eps3 = 0.100E-04 the starting matrix a(1,1)...a(n,n) is -0.192E+03 0.620E+02 0.410E+02 0.620E+02 -0.213E+03 0.161E+03 0.410E+02 0.161E+03 -0.117E+03 iter = 1 sigma1 = 0.959E+05 sigma2 = 0.150E+06 iter = 2 sigma1 = 0.150E+06 sigma2 = 0.159E+06 convergence has occured, where iter = 3 s = 0.159E+06 sigma2 = 0.159E+06 ____________________ eigenvalues eigen(1)...eigen(n) are -0.210E+03 -0.338E+03 0.257E+02 eignevectors are in corresponding columns of the following matrix 0.933E+00 0.188E+00 0.308E+00 -0.301E-01 -0.810E+00 0.586E+00 -0.360E+00 0.556E+00 0.750E+00 corresonding angles (degrees) 21.160431 144.088359 41.440129 ______________________________________________________ determination of eigenvalues by jacobi's method, where n = 3 itmax = 50 eps1 = 0.100E-09 eps2 = 0.100E-09 eps3 = 0.100E-04 the starting matrix a(1,1)...a(n,n) is -0.370E+03 -0.360E+02 0.190E+02 -0.360E+02 -0.325E+03 0.400E+02 0.190E+02 0.400E+02 0.520E+02 iter = 1 sigma1 = 0.245E+06 sigma2 = 0.252E+06 iter = 2 sigma1 = 0.252E+06 sigma2 = 0.252E+06 convergence has occured, where iter = 3 s = 0.252E+06 sigma2 = 0.252E+06 ____________________ eigenvalues eigen(1)...eigen(n) are -0.393E+03 -0.307E+03 0.567E+02 eignevectors are in corresponding columns of the following matrix 0.860E+00 0.509E+00 0.358E-01 0.504E+00 -0.858E+00 0.101E+00 -0.820E-01 0.686E-01 0.994E+00 corresonding angles (degrees) 30.708568 149.067878 6.140429 ______________________________________________________ determination of eigenvalues by jacobi's method, where n = 3 itmax = 50 eps1 = 0.100E-09 eps2 = 0.100E-09 eps3 = 0.100E-04 the starting matrix a(1,1)...a(n,n) is -0.120E+02 -0.680E+02 -0.110E+02 -0.680E+02 -0.199E+03 -0.300E+02 -0.110E+02 -0.300E+02 0.660E+02 iter = 1 sigma1 = 0.441E+05 sigma2 = 0.554E+05 iter = 2 sigma1 = 0.554E+05 sigma2 = 0.554E+05 convergence has occured, where iter = 3 s = 0.554E+05 sigma2 = 0.554E+05 ____________________ eigenvalues eigen(1)...eigen(n) are 0.101E+02 -0.225E+03 0.695E+02 eignevectors are in corresponding columns of the following matrix 0.950E+00 -0.308E+00 -0.526E-01 -0.312E+00 -0.945E+00 -0.977E-01 0.196E-01 -0.109E+00 0.994E+00 corresonding angles (degrees) 18.202502 160.930568 6.370933 ______________________________________________________ determination of eigenvalues by jacobi's method, where n = 3 itmax = 50 eps1 = 0.100E-09 eps2 = 0.100E-09 eps3 = 0.100E-04 the starting matrix a(1,1)...a(n,n) is 0.246E+03 -0.390E+02 0.170E+02 -0.390E+02 0.800E+01 0.610E+02 0.170E+02 0.610E+02 0.114E+03 iter = 1 sigma1 = 0.736E+05 sigma2 = 0.846E+05 iter = 2 sigma1 = 0.846E+05 sigma2 = 0.846E+05 convergence has occured, where iter = 3 s = 0.846E+05 sigma2 = 0.846E+05 ____________________ eigenvalues eigen(1)...eigen(n) are 0.253E+03 -0.265E+02 0.142E+03 eignevectors are in corresponding columns of the following matrix 0.988E+00 -0.154E+00 -0.614E-02 -0.143E+00 -0.899E+00 -0.413E+00 0.582E-01 0.409E+00 -0.911E+00 corresonding angles (degrees) 8.881248 154.064547 155.583181 Maximum = 0.12700E+02 Minimum = 0.38100E+01 Scale Factor = 0.26247E+01 x(1)= 0.00000E+00 y(1)= 0.00000E+00 z(1)=-0.78740E+01 x(2)= 0.13333E+02 y(2)= 0.00000E+00 z(2)=-0.78740E+01 x(3)= 0.23333E+02 y(3)= 0.00000E+00 z(3)=-0.78740E+01 x(4)= 0.33333E+02 y(4)= 0.00000E+00 z(4)=-0.78740E+01