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Elastic-wave surfaces in anisotropic media
Surfaces d’ondes élastiques dans des milieux anisotropes
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RESUME

A l'aide des solutions de 1'équation de Christoffel, certaines particularités
topologiques intéressantes de surfaces d'ondes sont décrites pour des milieux
anisotropes. Ces particularités comprennent des intersections surface tran-
versale-surface longitudinale et une conversion continue mode transversal-mode
longitudinal sur une meme surface. Pour la symétrie orthorhombique (mmm), des
intersections surface transversale-surface transversale se produisent pour tous
les cristaux: les surfaces transversales s'interconnectent et forment une
seule surface. De plus, certains cristaux orthorhombiques présentent une
intersection surface longitudinale-surface transversale telle que les trois
surfaces s'interconnectent pour former une seule surface. Une intersection
surface longitudinale-surface transversale signifie qu'une vitesse d'onde
transversale sera supérieure 2 une vitesse d'onde longitudinale. Une
conversion mode longitudinal-mode transversal signifie que les deux modes,
longitudinal et transversal, co-existent sur la meme surface. Plusieurs cas
réels sont considérés, y compris le bois et un matériau composite renforcé

de fibres.

ABSTRACT

Based on Christoffel-equation solutions, some interesting wave-surface topolo-
gical features are described for anisotropic media. These features include
crossovers of transverse-longitudinal surfaces and continuous transverse-longi-
tudinal mode conversion over a single surface. For orthorhombic symmetry
(mmm), crossovers of transverse-transverse surfaces occur for all known cases:
the transverse surfaces interconnect and form a single surface. Beyond this,
some orthorhombic crystals exhibit a longitudinal-transverse crossover that
causes all three surfaces to interconnect into a single surface. Crossover of
longitudinal and transverse surfaces means that a transverse wave velocity will
exceed a longitudinal wave velocity. A longitudinal-transverse mode conversion
means that both longitudinal and transverse modes exist on the same wave sur-
face. We consider several real cases, including wood and reinforced compos-
ites.
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1 — INTRODUCTION

Representation of solid-state physical properties by geometric surfaces
has obvious utility, as described by Nye [1]. For high symmetry materials, Nye
[2] and Lekhnitskii [3] describe the construé¢tion of elastic-constant represen-
tation surfaces. For lower-symmetry cases the increased complexity of the
elastic-constant tensor prevents simple representations. The present study
focuses on the motion of stress-wave deformation fields in anisotropic materi-
als and, especially, their graphical representation. We find several peculi-
arities of velocity surfaces and deformation fields. These peculiarities
relate to relationships among components of the elastic-stiffness tensor.

Stress=-wave deformation fields in anisotropic media can be approximated by
plane-wave solutions to the elastic-wave equation. This simplification leads
to Christoffel equations [4]:

(Cijug vyue = pv263g) Py = O, (M

where C jkg 1s the fourth-rank elastic-stiffness tensor, v; are direction co-
sines o% the wave vector (normal to the plane wave) relative to the material
axes, Xi, o is the mass density, v is the phase velocity of the plane wave
parallel to v;, and §;5 is the Kronecker delta. Equation (1) represents an
eigenvalue problem with three eignvalues, pv%, ‘and three eigenvectors that
correspond to particle-displacement direction cosines (or polarizations), Py .
The orientation of the particle displacement with respect to the wave vector is
denoted by subscripts (t, qt, q%) on phase velocities: t means Pj is trans-
verse to v; (pjvy = 0), qt (quasi-transverse) means the largest component of pj
is transverse to v; (0 < vjp; < 1/¥2), and q% (quasi-longitudinal) means the
largest component of p; is parallel to v; (1//2<v1p1<1). Along principal mate-
rial axes, pure transverse waves and pure longitudinal waves must exist for all
wave velocities.

From eq. (1) we can draw the phase-velocity surface (eigenvalues) and dis-
placement field (eigenvectors) by considering all possible propagation direc-
tions (wave vectors). Both Musgrave [5] and Auld [6] used this method to study
the influence of a material's elastic symmetry on the wave-surface geometries.
Recently, Musgrave [7] described new wave-surface geometries where all surfaces
interconnect into a single-surface for spruce wood. Independently, Ledbetter
and Kriz [8] explained how peculiar mode transitions in the deformation field
relate to this single surface geometry for a calcium-formate crystal. In both
studies the unique wave-surface geometries relate to inequalities among elas-
tic-stiffness tensor components. Studies by Al'shits and Lothe [9]
also show a special case where no degeneracy occurs for a hypothetical
orthorhombic material and a single surface cannot exist. In the present study
we summarize these elastic-topological peculiarities for both crystalline and
fiber-reinforced materials. When examined from the viewpoint of wave propaga-
tion, physically realizable combinations of these peculiarities lead to remarka-
ble deformation fields.

The propagation direction of moving displacement fields in anisotropic
media is also influenced by peculiarities in elastic anisotropy. Using
Huygens's principle, Musgrave [5] demonstrated graphically how the propagation
direction can deviate from the wave vector. This direction is called the
energy-flux vector,

Ej = -cijkl uk,gl:li (2)
where u; is the displacement vector for a plane wave,

u; = Apjcosv(vt-v;X;/v) (3)

where t is time and v = (v1v1)1/2. The velocity of propagation in the direc-
tion of E; is called the group velocity, vg. For isotropic materials E; and Vg
coincide with v; and v. For anisotropic materials, E; deviates from vy by
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an angle, A = cos~ v L » where L; are the direction cosines of E For plane
homogeneous waves Hayes and Musgrave [10] show that the same deviation angle,
A, exists between v, and v. .

For hexagonal-symmetry fiber-reinforced materials, we demonstrate the in-
fluence of fiber volume fraction on the propagation direction and mode transi-
tions. We also consider fiber-reinforced materials such as wood, which has
orthorhombic symmetry.

2 = ANALYSIS

2.1 - Wave surfaces and displacement fields

For materials with orthorhombic elastic symmetry, the 21 independent elas-
tic stiffnesses, C ;g ¢» reduce to nine that can be written as a 6x6 symmetrical
n

matrix using Voigt otation,
Ci1  Cq Ci3 O 0 0
Cop C3 O 0 0
Ciy = C33 O 0 0 (4)
Cyy O 0
C55 0
C66

The characteristic equation of the eigenvalue problem defined in eq. (1)
becomes for orthorhombic symmetry, the symmetrical determinant.

(C'“\)% * C66\)§ + CSS\)%) = PV2 (C12 ® C66)\)1\)2 (C13 + C55)\)3\)1
(C66V$ + Czevg + Cuu\)3) = pV2 (C23 * Cuu)\)z\)3 = 0
(C55V$ + C),“'l\)% + C33\)§) - PV2 (5)

For all possible orientations of the wave vector v;, the roots of eg. (5) can
be graphed as three unique phase-velocity surfaces. It is convenient to exam-
ine the intersections of these surfaces with the three principal orthogonal
planes. Relationships describing the phase-velocity surfaces in each plane can
be derived from (5). Reference [6] gives

Xy = X, plane: vy = [(Cyyn + Cssm)/p]1/2 (6)
Vaus Vgt = {[Cgg + Cqym + Coon
£ /(Cgg + Cqqm + sz“)z - 4c)/2p)1/2 (7,8)
where C = (C im + Cg n) (C gm + Co n) = (C4q 66) mn, where m = c0328 and n =
sin®8. The angle 6 ?s measured p051tive1y rom X to XJ such that i < j. Simi-

larly for the other two planes,

Xy X3 plane: vy = [(Cyyn + C66m)/p]1/2 (9)

Vqar Vgt = {[C55 + Cqqm + C33n
+ /?055 + Cqqm + C33n)2 - uc’1/2p)1/2 (10,11)

where C’ = (Cyqm + C55n)(055m . C33n) = (C13 + c55)2mn;
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xa-xs plane: Vg = [(C66m + Cs5n)/p]1/2 (12)

Vqer Vqt = {[Cyy *+ Coom + C33n

£ /(Cyy + Copm + C33n)2 - 4C'1/2p}1/2 (13,14)
where C" = (Cyom + Cyyn) (Cyym + C33n) = (Cp3 + Cuu)zmn.

For hexagonal materials with the unique axis X,, the velocity surface is
axially symmetric. Thus, solutions are calculated as functions of +6 from X3:

vi(8) = [(Cyym + Cggn)/p1'/? (15)
Vqt(e)' ng(e) - [(Cqu + C11n + C33m ¥ /C)/29]1/2 (16, 17)
where C = [(Cqy=Cyydn + (Cyy - C33)md% + (Cy3 + Cyy)? sin20,

One should note that subscripts (t, qt, q&) assigned to the wave velocities are
only labels. In special cases, displacement polarizations t, qt, q&, and % may
coexist on the same velocity surface [8]. Thus, rarely, eqs. (7, 8, 10, 11, 13,
14, 16, 17) yield polarizations different from the designated qt, gqf& sub-
scripts. Equations (6, 9, 12, 15) represent exceptions where v, is always a
pure-transverse wave for all orientations.

Because of algebraic complexity, eigénvector solutions of eq. (1) for
orthorhombic materials were calculated numerically by backsubstituting pv2 into
eq. (1). For hexagonal symmetries, eigenvector solutions of eq. (1) are much
simpler and are written here as the ratio P1:P2:P3.

Py = [v3(Cqq + C12)/21V/2/[pv® = (Cqq = C1p)/2 - Cyyv] (18)
Py = [V3(Cqq + €12)721/2/[ov? + (V3 - v3)Cqq/2 + Cyp/2 = vECy,] (19)
P3 = [2V§(C23 + Cuu)/(C11 + C12)]1/2 /

(v + (v3 = v)Cyy + v3[2(Cog + Cyy)2/(Cqq + Cpp) = C33T} (20)

2.2 - Propagation directions

The angular deviation between the propagation direction (energy-flux vec-—
tor) and the wave vector is calculated by

where L; are the direction cosines of E;j. Kriz and Stinchcomb [11] calculated

Li for orthorhombic materials. For materials with hexagonal symmetry, Kriz and
Ledbetter [12] calculated L; for transformations in the X2-X3 plane (vq = 0):

Ly = CggP1PoVv2 * CyyP1P3V3 e
Ly = Cggp§vp + CopP3vp + Co3ppp3v3 + Cyylpopzvy + P%”z) (23)
L3 = C22p§V3 + C33D2D3V2 ¥ Cuu(p$v3 * D2P3V2) (24)

For fiber-reinforced materials we studied the influence of fiber volume frac-
tion on the properties listed above. This is accomplished by calculating ef-
fective Cij from relationships derived by Datta, Ledbetter, and Kriz [13].

3 - RESULTS AND DISCUSSION

For elastically isotropic solids, the phase-velocity surfaces are concen-
tric spheres where t and qt surfaces coincide (see Fig. 1). All waves are pure
mode. Mechanical stability requires that vy exceed vt/h/3; Thus, the % and
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surfaces cannot intersect for isotropic media.

For anistropic materials, e.g. calcium formate, wave surfaces can inter-
sect. The most common intersection occurs for the t and qt surfaces; Figs. 2
and 3 exemplify this type of intersection.

X3
6000)

Fig. 1. Polar diagram of phase velocity (m/s) for a typical isotropic mate-
rial: polycrystalline 304 stainless steel. Elastic constants [14] are Cyq =
261, Cq, = 106 GPa; p = 7.88 g/cm3.

Fig. 2. Polar diagram of phase velocity (m/s) in the x1-x plane of a material
that exhibits t-qt intersections: calcium formate [Ca(HCOB)zj, which is ortho-
rhombic., Elastic constants [15] are Ciq = 49.2, Cpp = 24.4, C33 = 35.4, Cip =

2"-8. C13 = 2%-5, C23 e 1“.5, Cuu el 10.5, 055 " 12.1, C66 - 28. GPa;'

p = 2.027g/cm>.

Fig. 3. Same as Fig. 2, except for X;-X, plane, which exhibits t-qt intersec-
tions In each quadrant. See also Fig. 5.

Less common is an intersection of a ql surface with a qt or t surface; Fig. U4

shows such an example. Thus, for this one case, in one direction v 9 = Vii and
along X, (and near X,) vy actually exceeds Vae - In the X;-X, plane for this

83



same material no intersection occurs but a polarization-mode transition occurs.
Figure 5 illustrates this mode transition; it shows polarization vectors at 9°
increments as double-headed arrows. To more clearly understand the relationship
between surface intersections and mode transitions, Ledbetter and Kriz [8] drew
an isometric combination of principal planes shown in Figs. 2-U4. Figure 6

shows this isometric diagram.

X3
60007

Fig. 4. Same as Fig. 2, except for X2-x3 plane, which exhibits t-q& intersec-
tions in each quadrant.

From Fig. 6 we observe that for calcium formate all surfaces interconnect into

a single surface. Close examination of egs. (6-14) reveals that necessary and
sufficient conditions for this geometry are

X2
60001

Fig. 5. Same as Fig. 3, but with polarization (particle displacement) vector
indicated by arrows. Fastest wave is pure longitudinal along X,, but pure
transverse along X2. Second wave is pure transverse along Xy, but pure longi-
tudinal along X,, where v,y becomes a transverse wave and exceeds a longitudi-
nal wave speed. Third wave is pure transverse for all directions.
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Fig. 6. (a) Isometric plot of phase-velocity (m/s) surfaces intersecting the
thréee principal orthogonal planes: calcium formate; see Figs. 2, 3, and 4.
This figure summarizes the gqt-t intersections at a, b, and ¢, and the t-qf
intersection at d. Together, these topological features reduce the usual three
velocity surfaces to a single surface. (b) Isometric plot of displacement
fields coincident with phase-velocity surfaces of the same material. Line
segments represent displacement direction contained within orthogonal planes.
Dots represent displacements normal to orthogonal planes. Arrows represent
pure modes. Mode transitions occur only in the x1-x2 plane.

Closer examination of other inequalities leads to several geometries [8]. From
these studies we concluded that, except for calcium formate, all reported
orthorhombic cases require interconnection of the qt and t surfaces into a
single surface (see Fig. 7).

18 al
6000] —.—qt Xa
---------- t

Cd(HCOO0), \ /

A
74 /
X3 e 1 £ 7 !

Fig. 7. (a) Isometric plot of phase-velocity (m/s) surfaces intersecting the
three principal orthogonal planes: cadmium formate [Cd(HCOO),] which is

orthorhombic. Elastic constants [15] are Cyq = 50.0, Cpp = 20.5; Cao = 411,
c = 24,6, C = 27«35 Co3 = 16.4, C = 8,53, C = 6,32, C = 14,1 GPa;
12 33 3 Ly ? 66
p = 2.02 g/cm (C Cos %) > (Cyy,» Cgg, Cgp (b) Isometric plot of dis-

placement fields c01ncident with phase-velocity surfaces of the same material.
Graphical conventions are same as Fig. 6(b). There are no mode transitions.
Two additional geometries shown in Figs. 8 and 9 are also possible but, as yet,
no examples are known.
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Fig. 8. (a) Isometric plot of phase-velocity surfaces intersecting the three
principal orthogonal planes of a hypothetical orthorhombic material whose
elastic constants satisfy the inequalities Ci1 > Cgp > Cg5 > Cop > Cyy > C33.
This figure demonstrates three unconnected wave-velocity surfaces. See also
Musgrave [7] and Al'shits and Lothe [9]. (b) Isometric plot of displacement
fields coincident with phase-velocity surfaces of the same material. Graphical
conventions are same as Fig. 6(b). Mode transitions occur in all planes.

Independently, Musgrave [7] used similiar inequalities to classify the various
geometries of materials with orthorhombic symmetry. Musgrave observed that
spruce wood also satisfies an inequality similar to eq. (25) except C66 > Cq1q
(see also Fig. 10). Musgrave ex-plained the inequality requirements for sur-
faces with no intersections (see Fig. 8). These wave surfaces were also
studied by Al'shits and Lothe [9]. Later, Holm and Lothe [14] studied the dis-
placement polarization fields for body waves in anisotropic media without an
acoustic axis.

L.

Fig. 9. (a) Isometric plot of phase-velocity surfaces intersecting the three
principal orthogonal planes of a hypothetical orthorhombic material whose
elastic constants satisfy the inequalities C > € > Cyy > 055 > C 3-
This figure demonstrates a q-qt crossover at a. %b) Isometric plot of dis=
placement fields coincident with phase-velocity surfaces of the same material.
Graphical conventions are same as in Fig. 6(b). Mode transitions occur only in
the X,-X3 and X3-X2 planes.
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From studies of Jaswon and Gillis [17, 18] we observe that the
orthorhombic elastic symmetry for spruce wood can be modeled by aligned rectan-
gular cellulose fibers arranged in a rectangular array (see Fig. 11) where the
cellulose fibers also have orthorhombic symmetry. With the present model it
would be possible to transition between geometriés of Fig. 6 and Fig. 7 by
changing the ratios a:b and c¢:d for dimensions shown in Fig. 11. It 'may also
be possible to construct special fiber—-array geometries that satisfy conditions
for orthorhombic symmetries shown in Figs. 8 and 9, which are presently only
hypothetical possibilities.

X3 —adl X3

SPRUCE T g
WOooD B

5000

Fig. 10. (a) Isometric plot of phase-velocity (m/s) surfaces intersecting the
three principal orthogonal planes for spruce wood, which is orthorhombic [7].
Elastic constants are Cyy = 0.44, Cpp = 16.3, C33 = O. 78, Cio = 0. 31 Cq

0.20, Cy3 = 0.43, Cyy = b.62, ¢ 0.40, Cg .17 GPa; p = 1 g/om. 2 sin-
gle surface exists similar to F?g. 6 except 866 >'Cqq hence t-qf occurs in the
X1-X3 plane. (b) Isometric plot of displacement fields coincident with phase-
velocity surfaces of the same material. Graphical conventions are same as in
Fig. 6(b). Mode transitions occur only in the X;-X, plane.

7//////{_///
//A//-g///

-—a—

7/ V7T

Fig. 11. Cross—section showing morphology of wood after Gillis [18]. Cross-
hatched region represents rectangular cellulose fibers surrounded by isotropic
matrix.

For aligned fiber-reinforced graphite/epoxy materials with hexagonal sym-—
metry (random array) Kriz and Ledbetter [12] observed several peculiarities in
elastic-wave surfaces and displacement fields caused by variations in the fiber
volume fraction (see Figs. 12-16). Figures 12 and 13 demonstrate the influence
of fiber volume fraction on phase-=velocity and group-velocity surfaces. Here
we follow Musgrave [5] and plot group veloecity as a function of 6° = 8 + A.
Large changes in flux-deviation angles, shown in Fig. 15, occur at low fiber
volume fractions. Hence, the distorted group-velocity surfaces in Fig. 13
result from these changes in flux-deviation angles with fiber volume fraction.
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Fig. 12. Phase-velocity (m/s) polar diagram for unidirectional graphite/epoxy
at four fiber volume fractions. 3

Fig. 13. Group-velocity (m/s) polar diagram corresponding to Fig. 12.

Fig. 14. Polar diagram of displacement direction coincident with phase-velocity
surfaces at a fiber volume-fraction of 1.0. For clarity, only one quadrant
shown.

At a fiber volume fraction of 100% (see Fig. 14) we observed mode transi-
tions similar to calcium formate and spruce wood except that surfaces do not
interconnect into a single surface. For the q surface the displacement in the
X,-X, plane changes from pure longitudinal along X3 to pure shear along X,.
Consequently, in the X —-X, plane one observes vy > vy along X, when Cyy > Cpo.

This mode transitlon can also be observed in Fig. 16 for various fiber
volume fractions. Here the displacement deviations, § = cos'1vipi, from the
wave vectors are shown versus 8. In Fig. 16 we observe that fiber volume frac-—
tion effects a smooth mode transition. The mode transition starts at Vf = 0.3
where v,o transitions into v t at e = 56°. As Ve increases, this mode transi-
tion cogtinues predictably; for Vf > 0.96, v t transitions into Vi Thus, %,
ql, qt, and t particle displacements are alsg observed along a single surface
for a fiber-reinforced material.

Unlike crystalline materials, variations in propagation directions can
occur for fixed orientations in fiber-reinforced materials. Kriz [19] demon-
strated how changes in the elastic properties of the matrix component of a
unidirectional graphite/epoxy composite can influence the flux deviation angle,
A. Figure 17 shows the comparison of measurement with theory for the configu-
ration shown in Fig. 18. Here we find that an increase in deviation angle,
Aqt. occurs when absorbed moisture degrades the resin properties. When fiber
elastic properties degrade, we predict a decrease in deviation angle, Aqt'
Values of elastic properties are given in [19].
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Fig. 15. Flux-deviation angles for various fiber volume-fractions. .For clar-
ity, v¢ curves are omitted.

Fig. 16. Displacement-direction deviations for qu- For higher fiber volume-
fractions, a mode transition occurs.

For all materials considered here, we find that all components of the
elastic-stiffness tensor satisfy the mechanical-stability conditions (positive-
definite strain-energy density).

WAVE Measured Predicted
/—TVECW“ DRY EPOXY e
6 y UNDEGRADED 60 O Dry Epoxy
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A°l e Aql mc*nou : v Wet EpOXYy ——e——a
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/. TRANSMITTER

Fig. 17. Schematic diagram of variation in propagation directions in a unidi-
rectional graphite epoxy material.

Fig. 18. Comparison of measured and predicted flux-deviation angles resulting
from absorbed moisture degrading only the epoxy elastic properties.

4 - SUMMARY

From previous studies discussed above, for anisotropic media, we find many
remarkable topological features of elastic-wave surfaces. For orthorhombic ma-
terials we observe that qt and t surfaces must always interconnect into a sin-
gle surface. Calcium formate and spruce wood are exceptions where g, qt, and
t surfaces all interconnect into one surface. These geometries and others are
sufficiently defined by inequalities among the diagonal components of the elas-
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tic-stiffness tensor. Associated with these geometries we find peculiarities
in the displacement fields. For calcium formate and spruce wood we find mode
transitions where %, q%, qt, and t displacements coexist on the same surface.
For fiber-reinforced materials we find that similar mode transitions occur at
high fiber volume fractions but interconnections do not result in single
surfaces. In both symmetries we observe transverse waves faster than longitu-
dinal waves. For fiber-reinforced materials we also observe a strong influence
of fiber volume fraction on propagation direction. For graphite/epoxy we found
that variations in propagation direction arise from changes in either fiber or
matrix elastic properties.
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