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Abstract   A review of second order tensor visualization
methods and new methods for visualizing higher order
tensors are presented.  A new visualization method is
introduced that demonstrates the property of mathematical
invariance and arbitrary transformations associate with tensor
equations.  Together these visualization methods can enhance
our understanding of tensors and their equations and can be
insightful in the analysis and interpretation of large complex
three-dimensional numerical/experimental data sets.
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1 Introduction

The advent of high performance computers (HPC) has
allowed researchers to model large three-dimensional (3D)
physics based simulations.  Physical properties predicted by
these 3D simulations often yield gradients of tensor
properties that can result in large 3D topological structures.
These tensor properties can also be a combination of
experimental and numerical results.  Tensors, their gradients,
tensor equations, and the resulting 3D topological structures
can be sufficiently complex such that researchers can benefit
from using visualization methods in the analysis and
interpretation of their HPC and experimental results.

1.1 Visualization of second order tensors: a review

Several researchers have developed valuable visualization
methods that represent the more common second order
tensors, both symmetric and anti-symmetric, such as stress

and strain tensors, velocity gradients, rate of strain tensors,
and momentum flux density tensors that are used in solids
and fluid applications, [Delmarcelle and Hessellink (1993)].
When tensors are generalized as vector fields, the approach
has been to use vector visualization techniques.  Several
tensor visualization techniques are extensions of the more
common vector visualization techniques but lack the
information rich properties inherently associated with higher
order tensors.

Second order tensor visualization techniques are widespread,
from scalar contractions, localized iconic figures to global
continuous structures that can convey continuum spatial
properties more effectively.  Every technique brings its own
advantages with inevitable drawbacks such as: visual
cluttering, information overloading and information
contraction (See Table 1). Depending on the physical or
mathematical property being investigated, vector and scalar
information can be extracted from second order tensors using
inner products and matrix decomposition.  Consequently
simpler visualization techniques can be employed to visualize
this extracted information. More complete visualization
techniques use all the terms of second order tensors, which
are used to create Lamé’s stress ellipsoids, Haber glyphs,
Reynolds glyphs, and HWY glyphs.  These ellipsoids and
glyphs are localized icons (“glyphs”) based on eigenvalue-
eigenvector decompositions, except for Reynolds and HWY
stress tensor glyphs which base their geometric shape on
additional normal and shear tensor transformation properties.
By means of hyper-streamlines the underlying 3D topological
structure and global properties of second order tensor fields
can also be visualized.
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1.1.1 Lamé’s stress ellipsoids

The first attempt to visualize second order stress tensors has
its’ origin in the theory of elasticity where stress components
were combined into a 3 by 3 matrix which was decomposed
into a principal stress state where eigenvalues represent the
scalar magnitude of the principal stresses and the
eigenvectors represent the directions of these principal
stresses.  This decomposition is also associated with a simple
linear tensor coordinate transformation where three
orthogonal eigenvectors are each associated with their
respective eigenvalues.  The major, medium, and minor axes
of the Lamé’s ellipsoid represent the largest, intermediate and
smallest magnitudes of the three eigenvalues (principal
stresses) and the orientations of this ellipsoid represent the
eigenvector direction cosines of the rotated principal stress
state.  Hence, Lamé’s ellipsoids are observed to be “tilted”
away from the original coordinates.

Although these ellipsoids can be adequately used to extract
and effectively visualize basic decomposed tensor properties
representing the principal state of stress, other stress tensor
properties, such as shearing and normal stresses associated
with the second order stress tensor transformations, are not
shown.  Hence these ellipsoids represent an information
contraction or simplification of a more complex set of tensor
properties.  The smooth surface of the ellipsoid also obscures
small changes in the eigenvector orientations, which are more
difficult to envision and represents a cognitive limit of the
“minds’-eye”.

1.1.2 Haber Glyphs

Haber glyphs are also based on eigenvalue-eigenvector
decomposition but attempts to overcome the cognitive
limitations of the Lamé’s ellipsoids.  The key feature of
Haber glyphs is to highlight one principal direction over the
others by using the shapes of an elliptical disk and a rod to
represent the directions associated with the minor,
intermediate and major axes of the ellipsoid.  The length and
direction of the rod represents a particular eigenvalue and
eigenvector of interest, usually the eigenvalue that is
expected to vary the most in magnitude and direction, and the
remaining two eigenvalues are visually represented by an
elliptical disk.  Haber glyphs have been effectively used to
study changes in principal directions of stresses in
geomechanics and dynamic fracture, [Haber, (1990)].

1.1.3 Reynolds tensor glyph

Unlike the previous ellipsoids and glyphs that only represent
the principal stress state, the Reynolds stress tensor derives
it’s shape from the tensor transformation of normal stress for
all directions, where the distance between origin and any
point on the surface of the glyph is a measure of the
magnitude of the normal stress acting in that direction,
[Moore, Schorn, and Moore, (1995)].  Hence it’s shape not

represents all normal stresses of a stress tensor in 3D, but the
shape is more directional, similar to Haber’s glyph, and is
more effective in representing the orientation of the principal
stress state.  Because this shape is based on a second order
tensor transformation, this shape is referred to as a tensor
glyph which naturally orients itself according to principal
directions.  Hence tensor properties, beyond the principal
stress state are visually represented.  Because the shape is the
result of an inner product (“contraction”) of the second order
stress tensor with the unit vector pointing in all possible
directions, this glyph is the result of an information
contraction where the second order tensor is reduced to a
scalar quantity that exist at a point.  In this regard the
Reynolds tensor glyph is similar to the previous ellipsoids
and glyphs, which only represent tensor properties that exist
at points.  Hence these glyphs are referred to as “point
glyphs”.

1.1.4 HWY tensor glyphs

HWY tensor glyphs, like Reynolds tensor glyphs, are point
glyphs whose shape is defined by a tensor transformation but
instead of plotting the shape using normal stress component
of the second order tensor the shear stress component is used
instead, [Hashash, Yao, and Wotring (2003)].  This results in
a very unique and useful glyph shape when the researcher is
just interested in shear stress tensor transformation.
Although the magnitude of the principal normal stresses are
not observed, the orientation of the principal stress state is
seen as dimples that collapse into the glyph center where
shear stress is zero, hence a zero radius.  For example a
hydrostatic isotropic stress state collapses to a point where
shear stress cannot exist in any direction.

1.1.5     Hyperstreamline tubes

Tensoral properties often span a continuum in coordinate
space and thus render the point glyphs previously discussed
quiet incapable of mediating the driving physical phenomena
often associated with other physical properties that occupy a
gradient in space.  Because close sampling of point glyphs
result in obscuration and information clutter, interactive
computer methods are employed to probe into physical
configurations that exist as the observer moves within a 3D
neighborhood of points.

Hyperstreamline visualization addresses the continuum
features of tensor fields and successfully reveals the
underlying topology of the driving physical agents that exist
within a volume, [Delmarcelle and Hesselink, (1993)]. A
hyperstreamline is a tube that traverses the 3D space whose
axes is aligned with one of the second order stress tensor
eigenvectors at each point in a continuum and it’s
corresponding eigenvalue is mapped as a color onto the
ellipse which is defined by the remaining two eigenvalues.
The elliptic radial cross-section of the hyperstreamlines are
tubes that vary in shape, size, and orientation according to the
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other two eigenvalues and eigenvector directions. Crosses
instead of ellipses can also used to overcome the visual
obscuration imposed by adjacent hyperstreamline tubes.

Hyperstreamlines, unlike point glyphs, cannot be drawn
without defining a path of points associated with physical
properties associated within the volume of interest. “Seed
points”, integration method, and the choice of principal
eigenvectors strongly influence the final shape of the
hyperstreamline tube.  Different seed points usually reveal
different properties of the stress field, where some integration
paths take too long to calculate, and other paths fail to
capture all vital aspects of the 3D field.  The choice of the
integration eigenvector, which is oriented parallel to the tube
axis, determines the visual output in the most profound way.
Hence the task of drawing meaningful hyperstreamline tubes
cannot be accomplished without the researcher’s experience
and knowledgeable intervention.

Table 1 Second Order Tensor Visualization Techniques

Technique Structure Advantages Limitations

Scalars &
vectors

Conventional
graphics:
isosurfaces

& localized
vector glyphs

High
precision,
customization

Information
contraction
(IC)

Lamé’s
ellipsoids

Localized
glyphs

Principal
stress state:
directions &
magnitudes

IC +
Information
clutter and
visual
obscuration
and cognitive
limits (CL)

Haber
glyphs

Localized
glyphs

Principal
stress state:
directions &
magnitudes

IC +
Information
clutter, visual
obscuration
and cognitive
limits (CL)

Reynolds
tensor
glyphs

Localized
tensor
transforma-
tion

Principal
stress state
plus other
tensor
properties

IC + CL

Visually
complex
structures (VC)

HWY

tensor
glyphs

Localized
tensor
transforma-
tion

Principal
stress state
plus other
tensor
properties

IC + CL

Visually
complex
structures (VC)

Hyper-
streamline
tubes

Global
gradient
structures

Global tensor
properties

VC + Results
depends on
seed
parameters

1.2 Fundamental tensor properties: a review

Before visualizing tensors and tensor equations, it is
important to first review some of the fundamental tensor
properties that will be visualized.

1.2.1  Invariance and arbitrary transformations

All tensor equations are invariant to arbitrary coordinate
transformations.  These properties can be demonstrated for
two different tensor equations that define static force
equilibrium.  The gradient of the second order stress tensor
followed by an indical contraction defines static force
equilibrium, [Frederick and Chang, (1997)].

sji,j = 0,                             (1)

where sji is the second order stress tensor and the subscripts,
“ji”, are called indices.  The indice “,j”, which operates on sji,
represents a gradient of the second order stress tensor.  In this
case the indice, “j”, associated with the gradient is contracted
(“summed”) with one of the indices on the stress tensor
where the surviving “free” indice, “i”, is then associated with
a force vector or first order tensor.

The derivation of Cauchy’s relation also assumes static force
equilibrium.

si  = sji nj        (2)

Figure 1:  Equilibrium tetrahedron element where nj is
perpendicular to plane (P1P2P3).

where sji  is a second order tensor, s i is a first order stress
tensor (“vector”), and nj is a unit vector perpendicular to the
plane (P1P2P3) on which the first order stress tensor acts.

Equilibrium can be visualized by using a simple free body
diagram, Fig.1.  The three components of the first order stress
tensor, si, act on plane (P1P2P3) and balance with the six
symmetric components of the second order stress tensor, sji,
which act on the adjacent orthogonal surfaces at point P.
First and second order stress tensors components exist at
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point P in the limit as points P1, P2, and P3 approach point P
[Frederick and Chang, (1972)].

The existence of static force equilibrium can be tested by
arbitrarily transforming Eq.2 in Rectangular Cartesian
Coordinates (RCC) space, xi, where xi transforms as a first
order tensor.

x'p   = apj xi   or xi  = api x'p        (3)

Similarly, the terms in Eq.2 exist in RCC space and are
tensors that transform as first and second order tensors:

n'p   = apj ni   or nj  = apj n'p,                     (4a)

s'r   = ari si   or si  = ari s'i,                                (4b)
s'mn = amj ani sji      or sji  = amj ani s'mn,       (4c)

where aij are direction cosine matrices (not tensors) that
transform any n-th order tensor from the initial “unprimed”
coordinates into the transformed “primed” coordinates.  This
transformation is valid for any arbitrary transformation.
Quantities can only be labeled as an n-th order tensor if they
transform as an n-th order tensor.

If Eqs.4 are substituted into Eq.2, the transformation matrices
combine into Kronecker deltas, which exchange indices and
the resulting equation maintains its’ form (“invariant”) but
now in the transformed primed RCC system.

s'p  = s'qp
 n'q                       (5)

Similarly Eq.1 can be transformed into the primed RCC and
maintain its’ form.

s'ji,j = 0                             (6)

An equation can only be called a tensor equation if each term
in the equation transforms such that the equation remains
unchanged (“invariant”) and does so for any arbitrary
transformation.  The implication here is that the mathematical
ideas of invariance  and arbitrary transformations are
consistent with our idea of a physical law.  In this case the
law of static force equilibrium.  Where does equilibrium
exist?  –  everywhere (“invariant”) and does so using
arbitrary transformation.  These properties, which are
inherent properties of all tensor equations, will allow us to
visualize properties associated with tensor equations.  It is
essential that the ideas of invar iance and arb i t rary
transformations be understood in order to grasp the idea of
the visualization methods presented here.  Invariance in a
graphical sense will be also used to visualize the invariance
in a tensoral sense.

1.2.2  Eigenvalue-eigenvector decomposition of the second
order stress tensor

For first order stress tensors, si, there is one special direction
for ni where si and ni are parallel and the shear component of
si acting on plane (P1P2P3) is by definition zero.  Such a
direction is called a principal direction.

 si = s ni        (7)

For any second order stress tensor, sji there are three
mutually orthogonal directions (“eigenvectors”) and their
corresponding magnitudes (“eigenvalues”) where the shear
stress component is zero, which defines the principal stress
state.  Combining Eq.1 and Eq.7 yields the equation for
solving for these three eigenvalues, s , and their
corresponding eigenvectors, ni,

( sij – s dij ) xi = 0,        (8)

where nj is rewritten as xi which symbolically represents the
principal stress state orientation shown in Fig.2.

The three eigenvalues [sa, sb, sc] are often envisioned as an
ellipsoid whose major, medium, and minor axes represent the
largest, intermediate and smallest magnitudes of the three
eigenvalues and the orientation of this ellipsoid represent the
eigenvector direction cosines, xi, of a principal stress state.
This ellipsoid will be referred to as the stress ellipsoid.

A1 x
2  + A2 y

2  + A3 z
2  + A4 xy +A5 xz + A6 yz +

A7 x + A8 y+A9z + A0  = 0        (9)

Although Eq.9 is not a tensor equation, it is none-the-less
useful for visualization of principal stress states, but the link
between graphical invariance and mathematical invariance
does not exist.

1.2.3  Stress Quadric Surface

A second order symmetric tensor can be represented with
ellipsoids by means of two entirely different methods.  The
eigenvalue-eigenvector decomposition, previously described,
has been more commonly used to visualize stress as a stress
ellipsoid.  There is yet another ellipsoid surface that can be
constructed from the stress tensor; the stress quadric
[Frederick and Chang, (1972)].

sij xixj =  ± k2
       (10)

This stress quadric is a scalar tensor equation that can also be
expanded into terms that fit the polynomial in Eq.9, where
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A0 = ± k2, A1 = s11, A2 = s22, A3 = s33, A4 = (s21 +s12),

A5 = (s13 +s31), A4 = (s23 +s32) and A7 = A8 = A9 = 0      (11)

Hence the stress quadric is a tensor equation that also
becomes a closed surface ellipsoid and is called the stress
quadric surface.

In Fig.2 point P is the same point P in Fig.1 where both si

and s ij coexist and the plane in Fig.2 is the same plane
(P1P2P3) in Fig.1.  Unlike the stress ellipsoid, the stress
quadric surface has two properties of importance in
visualizing the state of stress [Frederick and Chang, (1972)]:

1. Let P be the center of the ellipsoid and Q  be any
point on the stress quadric surface and the distance
PQ = r . The normal stress at P , acting in the
direction PQ is inversely proportional to r2.

2. The stress vector, si, acting across the area of plane
that is normal to PQ, is parallel to the line, ∂F/∂xi,
which acts normal to the stress quadric surface at Q.

Figure 2: Stress quadric surface at P is aligned along the
principal axes, xi, and shows only a portion of the ellipsoid.

The first property is exactly the inverse of the more
commonly used stress ellipsoid and consequently the shape
of the stress quadric surface can be intuitively misleading;
the square of the length of the principal axes are inversely
proportional to the principal stresses, whereas the stress
ellipsoid visually represents the largest eigenvalue along the
major principle axis and the smallest along the minor axis.

The second property visualizes all possible orientations of the
first order stress tensor.  All line segments that are normal to
the stress quadric surface at point Q are also parallel to the
first order stress tensor acting at point P, on a plane pointing
in the direction ni which intersects the stress quadric surface

at point Q, whereas the line segments acting normal to the
stress ellipsoid surface have no physical significance. Unlike
the stress ellipsoid, the stress quadric surface is also a tensor
equation and enjoys the property of invariance and arbitrary
transformations.  Here the arbitrary transformation can be
visualized as the collection of all line segments acting normal
to the stress quadric surfaces.

Based on these observations a new visualization method is
proposed that uses the more intuitive shape of the stress
ellipsoid to visualize the principal stress state, but also allows
the second property of the stress quadric to be visualized as
an arbitrary transformation of the first order stress tensor.

2 Principal, Normal, and Shear (PNS) tensor glyph

The PNS tensor glyph is a new tensor glyph that visualizes
both the normal and shear tensor transformations of the stress
quadric surface and maps these tensor properties as color
onto the stress ellipsoid surface that represents the principal
stress state.

In Fig.2 the first order stress tensor, si, can be resolved into
two components; 1) normal components acting parallel to ni,
and 2) shear components acting parallel to the plane.  The
orientation of large normal and shear stresses can be an
important factor in predicting stress-induced deformations
and crack propagation.  The eigenvalue-eigenvector
decomposition of any second order stress tensor is a
transformation where the principal axes, x i, represent
directions where the shearing stress is zero.  Therefore the
orientation of nonzero shear stresses would exist somewhere
in between the principal axes, x i.  On the stress quadric
surface pure shear would be viewed as line segments normal
to this surface but at the same time acting parallel to the
plane at point P.  The collection of all these line segments
would however be difficult to visualize (cognitive limit), so
the angle between s i and the unit normal, ni, at point P  is
represented as a color at point Q.  This color would represent
the components both normal and shearing stress at point P by
an angle, which is calculated using the tensor properties of
the stress quadric surface, but mapped as color onto the
stress ellipsoid surface at point Q .  Hence all of the
components of the first order stress tensor, sj, tension,
compression and shear, in any arbitrary direction, ni, can be
visualized as a color which is mapped onto the stress
ellipsoid surface that represents the principal stress state.

Let P be the center of the ellipsoid and Q be any point on the
stress ellipsoid surface.  The direction cosines of PQ are

ni = xi / r ,      (12)

where r = |PQ|.  The stress vector, s i, in this direction is
given by Eq.2 and the angle between the unit normal, ni, to
the plane and the stress vector, s j, acting on that plane is
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calculated using the scalar product of the stress vector, si,
and ni.

q = cos –1 (si ni  / sk sk )      (13)

Figure 3a: Color map of tension, shear, and compressive
stresses plotted on a stress ellipsoid surface: “PNS glyph”.

Figure 3b: Second order stress tensors plotted as “PNS”
glyphs at and below the surface for a material in  a state of
residual stress. Principal stresses (MPa) are listed in brackets
and aligned for comparison with depth, [Harting, (1998)].

This angle can now be mapped as a color on a stress ellipsoid
surface, where ni intersects this surface at point Q.  Using a
standard rainbow color spectrum 0° (purple) corresponds to
pure tension, 90° (green) to pure shear, and 180° (red) to pure

compression.  The shearing stress is visualized as green
bands of color traversing the ellipsoid surface, Fig.3a.  This
technique can be used to observe variations in a set of second
order stress tensors with depth, Fig.3b, where a semi-
numerical method was used to determine the depth profile of
experimental stresses, measured using X-ray diffraction, for a
material that transitions from a state of tension at the surface
to compression below the surface, [Harting, (1998)].

3 Visualization of stress gradients

Visualization of second order stress tensors can be
envisioned by drawing a collection of evenly space stress
ellipsoids or stress quadric surfaces in RCC space.  Either of
these closed ellipsoidal surfaces are referred to as a “glyph”.
The center glyph is used as the reference glyph and the
surrounding glyphs are located at evenly spaced distances,
±Dx, ±Dy, and ±Dz, which would be seen as a collection of
glyphs located to the north, south, east, west, front, and back
of the center glyph, Fig.4.

Figure 4: Stress glyph gradient where there is no change in
shape or orientation of the nearest neighboring stress glyphs
collapsing onto the center glyph.

If the glyph spacing is small but the 3D collection of glyphs
does not obscure the viewer from seeing how glyphs change
their shape and orientation, than the viewer is seeing the
stress gradient as a discrete change in space.

Dsij / Dxk      (14)

In the limit as Dxk goes to zero Eq.14 reduces to

sij,k,      (15)

which transforms as a third order tensor.  Summing forces
requires a contraction on “i” and “k” indices which yields,

skj,k.     (16)
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Comparing Eq.16 with Eq.1 suggests that it may be possible
to see the stress state of static force equilibrium, but only if
the viewer can visually confirm that Eq.16 does indeed sum
to zero, on indice “k”.  Since the stress glyphs shown in Fig.4
are all the same, the gradient, s ij,k, is indeed zero.  If the
stress glyphs surrounding the center glyph all have different
shapes and orientations than it is debatable if the observer
can envision how the summation, skj,k., goes to zero.
However any gradient in Fig.4 does indeed visually represent
force equilibrium but only in the limit as Dxk goes to zero.
This limiting process could be more accurately envisioned as
changes in the surrounding glyphs’ shape, color and
orientation as they collapse onto the center glyph from any
arbitrary direction.  Such a collection of glyphs would
visually represent the gradient in any arbitrary direction but
this image would be difficult to envision and represent a
cognitive limit.

Figure 5: Stacked stress glyphs and tensor tubes

Because it is difficult to properly envision this limiting
process graphically using discrete glyphs, early research on
visualization of tensor tubes, allowed the viewer to envision
gradients, but only in one direction, [Delmarcelle and
Hesselink (1995)].  For example take a series of stack glyphs
in the X3 direction, Fig.5, but remove the sc component of
the glyph and scale this eigenvalue as color, which is mapped
onto the circumference of the remaining two-dimensional
(2D) ellipse and then connect all possible colored 2D ellipses
into a “tensor-tube”.  Now extend this idea in all possible
directions.  What would this graphical image look like?  One
possible implementation of this idea is to envision a 3D stress
glyph disturbance emanating from a point source, similar to
Huygen’s principle for 2D plane waves, but using 3D stress
quadric glyphs instead.  This is an interesting idea, but very
difficult to visualize and would represent a cognitive limit.
One immediate requirement would be that, although this
surface maybe irregular, it must be symmetric to satisfy
equilibrium and its’ gradient.

Although stress glyphs are seen to occupy space, like scalar
quantities, stress glyphs represent properties that exist at
points.  But unlike scalar quantities second order stress
tensors are not invariant to arbitrary RCC transformations.
Recall quadric stress ellipsoids are visual representations of
all possible transformations at a point, therefore stress glyphs
become a graphical invariant at that point.  Of course stress
glyphs will change from point to point and so the graphical
idea of invariance  at points extends to their 3D stress
gradient structures shown in Fig.4 and Fig.5.  Hence there is
a link between graphical and tensor equation invariance not
just at points but through out RCC space.

4 Visualizing fourth order stiffness tensors and their
dynamic constitutive equations of motion.

Here our objective is to look at a spherical disturbance such
as a dilatational pulse, which initially expands equally in all
directions. Invoking Huygen's principal the reader can
envision very small 2D plane waves, which exist on the
surface of a very small sphere in the center of an anisotropic
crystal. Each of these plane waves travels in a specific
direction called the pointing vector, n i, at a speed that
corresponds to elastic properties in the same direction.
Hence, plane waves traveling in different directions in an
anisotropic material will travel at different speeds and the
continuous collection of all of these plane waves, although
initially a sphere, soon deviates into a nonspherical shape
simply because plane waves will travel faster in stiffer
directions and slower in less stiff directions.

First we start with the equations of motion for a continuum.

sji,j = r  ∂ 2 ui / ∂ t2     (17)

where r is the material density and ui is the displacement.
Recall the constitutive equations, for an anisotropic material,

sij = Cijkl lkl,     (18)

and substitute the strain-displacement relationship,

lij =  ( ui,j + uj,i ) / 2   (19)

into to Eq.18 yields

sij = Cijkl uk,l     (20)

Substituting Eq.20 into Eq.17 yields the equation of motion
in terms of displacements.
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∂ (Cijkl uk,l ) / ∂ xj = r  ∂ 2 ui / ∂ t2   (21)

This equation is further reduced if the material is assumed to
be homogeneous, ∂Cijkl / ∂xj = 0.  Next assumed a plane wave
periodic disturbance for the displacement, uk, which is
written in exponential form.

uk = A ak e i k (ni
 x

i
 – v t )  (22)

where v is the wave velocity, k is the plane wave number, ni

is the propagation direction (“pointing vector”), and ak is the
particle vibration directions.  Substituting Eq.22 into Eq.21,
reduces to an eigenvalue problem.

( Cijkl nj nl – rv2 dik ) ak = 0  (23)  (22)

This is called the Christofel’s equation of motion.  If Eq.23 is
expanded into a 3 by 3 matrix, it is perhaps easier to see that
the velocity terms along the diagonal, rv2, are eigenvalues
and the displacement direction cosines, ak, are eigenvectors.

Closer examination of Eq.23 reveals that along a prescribed
propagation direction, n j, both the eigenvalues and
eigenvectors can only be functions of the fourth order
stiffness tensor, Cijkl.  If the eigenvalues (wave speeds) are
calculated for all possible propagation directions, ni, this
would generate a 3D wave velocity surface for each
eigenvalue.  Since there are three eigenvalues, Eq.23 predicts
three wave velocity surfaces.

Figure 6: Wave velocity (eigenvalue) surfaces for Calcium-
Formate, where color is the wave-type which is defined by
the cosine of the angle, a kn k, separating two unit vectors:
the vibration direction (eigenvector), a k, with respect to the
propagation direction, n k.

The eigenvectors, which are particle vibration direction
cosines, can be mapped onto eigenvalue surfaces as color at
the point where n i intersects the wave surface.  Color is
defined by the cosine of the angle, a kn k, separating two unit
vectors.  Hence color visually defines the eigenvector
(vibration direction), ak, with respect to the propagation

direction, nk: a kn  k = 0 (pure longitudinal) and a kn k = 1
(pure transverse).  Using the rainbow color spectrum, color
would reveal the wave type: 1) pure longitudinal, 0˚ or
purple, 2) pure transverse, 90˚ or red, and 3) a mode
transition, 45˚ or green which would indicate a transition
from longitudinal to transverse. With colors the observer can
quickly determine the wave type and discover locations of
possible mode transitions.

Together the three surfaces, shown separately in Fig.6 or
connected in Fig.7, uniquely represent the fourth order elastic
stiffness tensor, Cijkl, at a point.

Wave velocity surfaces are drawn for a highly anisotropic
orthorhombic crystal called Calcium-Formate, Ca[HCOO]2,
Fig.6.  Because of Calcium-Formate’s unusual orthorhombic
anisotropy, this particular symmetry results in a single
connected surface, Fig.7, [Kriz and Ledbetter (1982)].  These
geometries are now being used as new sub-classification
scheme within orthorhombic symmetry, [Musgrave (1982)].

Figure 7: Combined wave velocity surface for Calcium-
Formate where translucent outer surfaces show a single
connected surface, Cijkl [Ledbeter and Kriz (1992)].

The concept of second order stress tensor gradients was
presented in section 3 as a discrete event showing how the
shape and orientation of stress glyphs change as they collapse
onto a center stress glyph.  But extending this concept as a
continuous gradient in all directions was difficult to envision
(cognitive limit), but perhaps could be approached as a
dilatational pulse.  The derivation in Eq.23 assumed such a
dilatational pulse, so perhaps Eq.23 and Eq.8, which are both
eigenvalue problems, are related.  It is easily shown that there
are only two free indices in the first term of Eq.23, which can
than be rewritten as a second order tensor, bkl, and the scalar
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term, rv2, can be rewritten as, b,

( bkl – b dkl ) ak = 0    (24)

Note, Eq.24 and Eq.8 have the same (“invariant”) form.  This
supports the proposed idea that a continuous stress gradient
in all directions is equivalent to a dynamic dilatational pulse
and therefore the images (“glyphs”) shown in Fig.7 which
represent the fourth order stiffness tensor, Cijkl, are related to
the gradient of a second order stress tensor, sji,k, Fig. 4, in a
continuous sense when propagating in all directions, ni.

5 Visualizing zeroth order tensors and their tensor
equation invariance

Scalar variables are zeroth order tensors, which are the
easiest tensor quantities to visualize.  By definition scalar
quantities are invariant to any arbitrary coordinate
transformation at a point but can change value at adjacent
points.  This is the simplest idea of a gradient.

Gradients of scalar functions can be visualized by moving
orthogonal planes through a region of interest where color
patterns within the moving plane change as a plane moves
along one of the three independent axes, Fig.8.  Gradients in
Fig.8 demonstrate a visual analog to the mathematical
gradient operator on a scalar function, F(x,T,t), [Kriz,
(1991)].

(25)

Figure 8: Gradients of a scalar function in parametric space
and its’ visual analog.

Gradients of a scalar function can also be visualized by using
a translucent voxel volume element, which can map an entire
3D region as a single continuous function, Fig.9.  These
gradients are best viewed by a smooth and continuous
rotation [Kriz, Glaessgen, MacRae, (1997)].  This rotating
image provides a comparative format similar to Tufte's
comparison of "Tables and Graphs", where simple graphs are
superior as a comparative format but lack the quantitative

format required for scientific analysis or engineering design,
[Tufte, (1990)].  The effect of rotating voxel volume imaging
in some cases yields dramatic results, especially when the
function is continuous with several contrasting regions.

Figure 9: Translucent voxels show a continuous gas-air
gradation, [Brown and Boris, (1990)], where the 3D gradient
is viewed when rotated [Kriz, Glaessgen, MacRae, (1997)].

Rotating voxel images demonstrate the cognitive analytic
power of the mind: that is, even elaborate and expensive
computer tomography systems cannot accomplish the same
numerical reconstruction of a 3D-volume with the same
speed.  Indeed our minds are capable of reconstructing a 3D
gradient instantaneously over the entire volume.  This
example is one of the best examples of the analytic power of
visual thinking [Kriz, Glaessgen, MacRae (1997)].

Figure 10: Volume visualization of the same gas-air
gradation in Fig.9 but using isosurfaces at a mixture of 50%.
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Scalar quantities are also visualized using isosurfaces. In
Fig.10 only one (“iso”) value 50% of a gas-air mixture is
shown as an isosurface.  This isosurface creates a 3D
structure, which is a more quantitative measure of the gas-air
mixture.  It would be possible to show this surface growing
or shrinking as the gas-air percentage is increased or
decreased respectively. Isosurface movement is another
method used to visualize a gradient but this only works for
small fluctuations at one particular value of the isosurface.

Often there is more than one scalar function.  For example,
pressure and temperature can simultaneously exist within the
same RCC space. With new graphical features it is possible
to extend the previous visual methods to observe how
multiple scalar functions share the same parametric space and
can also be used to test for the existence of new functional
relationships.

The new visual method is developed in terms of multiple
parameters, which are defined either as independent or
dependent parameters.  For example visualizing the scalar
function in Fig.8 is a four parameter model where the scalar
function, F(x,T,t), is the dependent parameter and parameters
x, T, and t are the three remaining independent parameters
that are visualized as coordinate axes.  The new method
allows for n-dependent parameters and m-independent
parameters, but for simplicity only a seven parameter (n=3,
m=4) model will be developed here as an example.

Figure 11: General parametric space (P1,P2,P3,P4) with
three arbitrary dependent parameter (P5,P6,P7) functions.

In the following example seven parameters will be visualized
where four of the seven parameters are chosen as
independent variables (not necessarily RCC space) and the
three remaining parameters are scalar functions that share
that parametric space.  This example is shown in Fig.11
where the first three parameters (P1, P2, P3) are independent
variables, shown here as orthogonal axes, and the fourth
orthogonal parameter is reserved as another independent
variable that exists uniformly the same everywhere, but
which can not be drawn as an axis: i.e. P4 = time (the fourth
orthogonal axis that can not be shown).  Because the three

dependent parameters are functions that share the same
independent parametric space, only three of which can be
seen, this method provides a common basis from which to
test for the existence of relationships between these three
functions.  In this example it is important to note the
difference between the dependent parameters (P5,P6,P7),
which are functions of P1, P2, P3, and P4, and the functional
relationship between the P5, P6, and P7 functions.

The visual task is to find the functional relationship between
P5, P6, and P7, if any exists.  The key idea here is that not all
independent parameters have to be visually represented as
coordinates, but can be varied independently through an
interactive graphical interface such as a dial or slider.

At some arbitrary point in Fig.11 each scalar function has a
unique value: e.g. P5 = 80, P6 = 120, and P7 = 220, Fig.11.
Units are intentionally not shown.  Obviously these values
can change at adjacent points.  This is our idea of a gradient.
Although it is not possible to see all possible values for all
three functions in the same region, it is possible to see an
isosurface for each function as a separate shaded surface that
intersect at a common but arbitrary point.  If the observer can
interactively change the isosurface value in Fig.11 and
instantaneously observe the corresponding change in shape,
then a gradient near this point could be determined for each
function, but only in that immediate region.  For example if
the scalar property were fluid pressure it would be possible to
envision the direction of flow.

Although it is highly recommended to think of the physics as
a visual method is used to analyze a data set, the visual
method is first developed only with respect to the property of
mathematical invariance.  Hence this visual method is
generalized and can be used for any arbitrary set of scalar
functions (dependent parameters) that share a common basis.
A 3D data set without units is presented here where two of
the three dependent parameters are drawn as unique but
intersecting isosurfaces in Fig.12.  If the surfaces do not
intersect then it is not possible to determine a functional
relationship between P5, P6, and P7.  If the surfaces intersect,
then there is an opportunity to investigate if this functional
relationship is linearly proportional or inversely proportional.

It is not necessary to determine the functional form of each
dependent parameter P5, P6, and P7 by a curve fitting
method.  In fact the functional relationship between P5, P6,
and P7 can be determined without knowing anything about
the dependent parameter functions. Many data sets are
generated by experimental scanning or numerical simulations
and lack a functional form to begin with. Curve fitting these
dependent parameter functions is avoided and our attention
focuses on how these arbitrary shapes (arbitrary functions)
relate only to each other.  If the three dependent parameters
are arbitrarily chosen as spherical functions, then P5 and P6
can be conveniently viewed as nonconcentric intersecting
spheres in Fig.12.  If P7 is another dependent parameter that
is not related to P5 or P6, then when P7 is mapped as a color
onto the P6 isosurface, color gradients would not be seen to
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align with the P5-P6 intersection in Fig.12.  Because of the
small range of colors for P7, the alignment of P7 color
gradients is difficult to see on the P6 isosurface (mostly
green).  Therefore P7 is also represented as an isosurface,
which is also seen not to align with at P5-P6 intersection and
demonstrates that there can be no functional relationship
between P5, P6, and P7.  However, if P7 is observed as a
constant color near the P5-P6 intersection as shown in Fig.13
or if the P7 isosurface intersection occurs near the P5-P6
intersection, then a simple linear functional relationship
exists between P5, P6, and P7.  In both Fig.12 and Fig.13 the
independent parameter P4 (time) is held constant.

Figure 12: No relationship exists between P5, P6, and P7.  A
translucent surface P7 is drawn intersecting the P5 and P6
isosurfaces because small changes in the P7 color gradient
mapped onto the P6 isosurface is difficult to see.

Results shown in Fig.13 only confirms that a simple linear
relationships exist, which could be one of three possible
relationships:

P5 P6 P7  = constant, (26)

P5 P6 = constant P7, (27)

P5 = constant P6 P7. (28)

These equations will be eliminated or confirmed visually.

If P6 is held fixed while the P5 isosurface is arbitrarily
increased and the color or surface for P7 is observed to
increase near the P5-P6 intersection, then Eq.26 is eliminated
as a possible functional relationship.  If P5 is held fixed while
the P6 isosurface is arbitrarily increased and the color or
surface for P7 is observed to decrease near the P5-P6
intersection, then Eq.27 is also eliminated as a possible
functional relationship, but Eq.28 is satisfied where P4 was

held constant.  Finally, if parameters P5, P6, and P7 are all
held fixed and only P4 is changed and if similar intersecting
patterns are observed at any arbitrary value for P4, then the
surviving functional relationship, Eq.28, is valid over the
entire parametric space P1, P2, P3, and P4.

Figure 13: Simple proportional and inversely proportional
relationships exist for P5, P6, and P7.  P7 is rendered as a
translucent isosurface, so that the observer can better view
the small changes in color for the P7 property.

Here the mathematical idea of arbitrariness and invariance
was used to visually confirm the existence of a tensor
equation for arbitrary variations in dependent parameters P5,
P6, and P7.  In this example there are two different types of
mathematical invariance.  For Eq.28 we have a simple zeroth
order tensor equation where not only are the scalar dependent
parameters P5, P6, and P7 invariant to arbitrary RCC
transformations at a point, but the same scalar equation itself
is also invariant to any arbitrary variation that exists through
out parametric space, P1, P2, P3, and P4. Both types of
mathematical invariance are related to our idea of a physical
law: that is, the parameters P5, P6, and P7 must always
satisfy the same functional relationship independent of any
arbitrary change that exists within parametric space P1, P2,
P3, and P4.  This same visual-mathematical paradigm of
invariance can be extended to higher order tensor equations.

Simple scalar relationships, such as Eq.28, commonly occur
in nature.  For example let P1, P2, P3 be RCC coordinate
space and P4 = time, and let P5, P6, and P7 be pressure, P,
density, r, and temperature, T, respectively in Fig.14 and the
constant in Eq.28 becomes the gas constant, R.  Where does
the gas law exist? – anywhere in space (P1,P2,P3) or time
(P4) and does so for any arbitrary variations in P5, P6, or P7.

P = r R T   (29)
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Figure 14: Extracting a linear zeroth order tensor equation
from numerical data of a simulation where mixing occurs in a
boundary layer at supersonic speeds, [Ragab and Sheen,
(1990)].  Temperature is left intentionally nondimensional.

6 Summary

All graphical representations of tensor properties and
functional relationships of these tensor properties in tensor
equations exist at points.  Although these graphical images
(“glyphs”) occupy space they represent properties that exist
at points and like scalar quantities these properties and how
they are visualized are invariant to arbitrary transformations
at points and through out independent parameter space.

A comparison of existing second order tensor glyphs together
with a the PNS glyph demonstrates a cognitive limit in the
complexity of stress tensor glyphs and their gradients.
However higher order tensors such as the fourth elastic
stiffness tensor representation of the dynamic Christoffel’s
equation of motion demonstrate a link to the fundamental
idea of a second order stress tensor gradient which can be
visualized as a 3D dilatational pulse.

Again it is noteworthy that verifying the existence of simple
zeroth order tensor (scalar) relationships is accomplished
without determining the functions (dependent-parameters)
P5, P6, and P7 in parametric space (P1, P2, P3, P4).
However graphical curve fitting is required but only to
visually confirm the existence of the proposed functional
relationships between P5, P6, and P7. Again the idea of
graphical and mathematical invariance is used.

Many more complex relationships can be visually extracted
from raw data by using this same method.  Many data sets are
generated by experimental scanning or numerical simulations
and lack a particular relationship to begin with.  In all cases,
just like finding solutions to differential equations, the
researcher can guess possible relationships and then confirm
them visually, because graphical and mathematical
invariance  coexist.  Here we assumed simple linear
relationships.  Using this method, researchers can explore

large complex data sets for trends and other possible
functional relationships.  A graphical invariant pattern,
associated with a relationship, is first observed then visual
cognitive thought is the mechanism that allows the
investigator to confirm the existence of the possible
relationship.  Again we use the computer to perform tedious
graphical tasks where in the past only a few gifted scientists
demonstrated an inherent ability to perform this same
graphical process psychically.
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