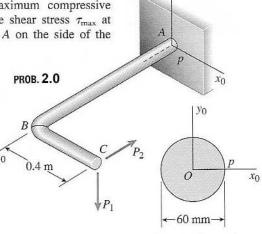
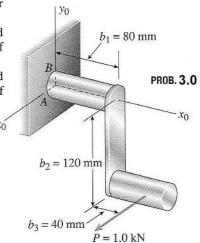

1.0 Determine the maximum tensile, compressive, and shear stresses at point *A* on the bicycle pedal crank shown in the figure.


The pedal and crank are in a horizontal plane and point A is located on the top of the crank. The load P=160 lb acts in the vertical direction and the distances (in the horizontal plane) between the line of action of the load and point A are $b_1=5.0$ in. and $b_2=2.5$ in. Assume that the crank has a solid circular cross section with diameter d=0.6 in.


У0

2.0 A horizontal bracket ABC (see figure on the next page) consists of two perpendicular arms AB and BC, the latter having a length of 0.4 m. Arm AB has a solid circular cross section with diameter equal to 60 mm. At point C a load $P_1 = 2.02$ kN acts vertically and a load $P_2 = 3.07$ kN acts horizontally and parallel to arm AB.

Considering only the forces P_1 and P_2 , calculate the maximum tensile stress σ_t , the maximum compressive stress σ_c , and the maximum in-plane shear stress τ_{\max} at point p, which is located at support A on the side of the bracket at midheight.

- **3.0** For purposes of analysis, a segment of the crankshaft in a vehicle is represented as shown in the figure. The load P equals 1.0 kN, and the dimensions are $b_1 = 80$ mm, $b_2 = 120$ mm, and $b_3 = 40$ mm. The diameter of the upper shaft is d = 20 mm.
- (a) Determine the maximum tensile, compressive, and shear stresses at point A, which is located on the surface of the upper shaft at the z_0 axis.
- (b) Determine the maximum tensile, compressive, and shear stresses at point B, which is located on the surface of the shaft at the y_0 axis.

Cross section at A