Quiz#2

Problem 1.0 A joint between two concrete slabs A and B is filled with a flexible epoxy that bonds securely to the concrete (see figure). The height of the joint is h=4.0 in., its length is L=40 in., and its thickness is t=0.5 in. Under the action of shear forces V, the slabs displace vertically through the distance d=0.002 in. relative to each other.

- (a) What is the average shear strain γ_{aver} in the epoxy?
- (b) What is the magnitude of the forces V if the shear modulus of elasticity G for the epoxy is 140 ksi?

Problem 2.0 A steel bar AD (see figure) has a cross-sectional area of 0.40 in.² and is loaded by forces $P_1 = 2700$ lb, $P_2 = 1800$ lb, and $P_3 = 1300$ lb. The lengths of the segments of the bar are a = 60 in., b = 24 in., and c = 36 in.

- (a) Assuming that the modulus of elasticity $E = 30 \times 10^6$ psi, calculate the change in length δ of the bar. Does the bar elongate or shorten?
- (b) By what amount P should the load P_3 be increased so that the bar does not change in length when the three loads are applied?

Problem 3.0 The assembly shown in the figure consists of a brass core (diameter $d_1=0.25$ in.) surrounded by a steel shell (inner diameter $d_2=0.28$ in., outer diameter $d_3=0.35$ in.). A load P compresses the core and shell, which have length L=4.0 in. The moduli of elasticity of the brass and steel are $E_b=15\times 10^6$ psi and $E_s=30\times 10^6$ psi, respectively.

- (a) What load P will compress the assembly by 0.003 in.?
- (b) If the allowable stress in the steel is 22 ksi and the allowable stress in the brass is 16 ksi, what is the allowable compressive load $P_{\rm allow}$?

