
Virginia Tech Department of Aerospace and Ocean
Engineering

AOE 4994 Undergraduate Research
Final Report

Alternative Methods of Spacecraft Control Using
Space Systems Simulation Laboratory and

VT-CAVE

Michael Shoemaker

May 7, 2003



1 Introduction

The goal of this research is to design a preliminary system utilizing the Space Systems
Simulation Laboratory (SSSL) and the VT-CAVE to explore alternative ways of con-
trolling spacecraft simulators from within a virtual environment (VE). This research
is conducted over the course of one semester with the intent of gaining background
knowledge related to this area and building a framework for possible future research.

This goal is accomplished with the following tasks:

• A review of the literature regarding manual control of satellite systems, com-
puter generated displays used in spacecraft control, and other research or ap-
plications using non-conventional display methods is conducted.

• The C++ code needed to visualize an orbital environment in the CAVE using
OpenGL Performer is written.

• The DIVERSE application programming interface (API), developed previously[1]
by the University Visualization and Animation Group of Virginia Tech, is used
to interface the CAVE simulation with the existing software for the spacecraft
simulator.

• Preliminary experiments are conducted to test the effectiveness of the system.

• Documentation of experiments, including results, ways to improve the system,
and recommendations for further research are given.

This report is divided into the following sections. First is a section highlighting the
literature review conducted thus far. Next is a section describing the CAVE graphical
simulations developed, and issues associated with them. This is followed by a section
describing the two main methods of animating the CAVE simulation using attitude
data, and the experimental results. Lastly is a discussion of the achievements and
limitations of the current system, and ideas for further research.

2 Literature Review

The initial topics considered in the literature review deal primarily with manual space-
craft control and associated display methods; however, while conducting the review,
other applicable areas become apparent. Examples of immersive or interactive dis-
plays are found in fields besides spacecraft control, such as undersea vehicles and
remotely operated planetary rovers. Also, such displays are used not only for direct
control, but mission planning, observation, and supervisory control. These additional
topics are included to illustrate the potential for any future VE control system using
the CAVE and the SSSL spacecraft simulators.

Typical manual control tasks of interest often involve maneuvering a spacecraft

1



in close relation to another object in orbit, such as rendezvous, docking, rescue, and
repair[2]. These kinds of tasks, called proximity operations (PROX-OPS) when occur-
ring within a 1-km radius of the space station, can be difficult for a human operator
to perform [3]. Trajectories viewed between two moving bodies, combined with the
effects of orbital mechanics, result in counterintuitive motion with a lack of stable
reference points. Numerous burns are required to complete a single task: departing,
maneuvering, and braking. The operator must also be aware of various safety con-
straints: clearance from structures, allowable approach velocities, fuel consumption,
and thruster plume impingement on sensitive equipment.

Because of their complexity, PROX-OPS are usually planned well in advance.
However, unanticipated situations will undoubtedly arise, and often they require quick
decision making or control schemes that cannot be implemented by computer automa-
tion. This is one argument in favor of direct manual control. A hypothetical example
would be a crew member or piece of equipment becoming separated from the space
station, and a recovery craft responding quickly on an improvised trajectory. A real-
life example shows another necessity of manual control; during the Gemini program,
astronaut John Glenn was able to save himself and his spacecraft using manual over-
ride when the automated system failed[4].

It should be noted that there are cases when automated control is preferred, and
direct human control could even be considered a hinderance[5]. Such examples in-
clude precise payload pointing for remote sensing or communication satellites, repet-
itive tasks like attitude correction or station keeping, and unmanned missions with
prohibitively large time lags in communication.

Of interest in this research is the graphical interface used by the operator in
the cases of manual control, and how it can add or detract from the mission. The
difficulties in the PROX-OPS scenarios described above “may be substantially over-
come by visualizing the orbital trajectories and constraints in a pictorial, perspective
display.”[4] Even though most of these systems described in the literature deal with
orbital motion, the lessons learned can be applied to attitude dynamics and control,
and space mission analysis as a whole.

One such system[6] was an interactive PROX-OPS planning tool using a tradi-
tional 2-D monitor. Rather than specifying thrust direction and magnitude, the oper-
ator selected trajectory waypoints in a graphical representation of the spacecrafts in
orbit (Fig. 1). An “inverse dynamics” algorithm then calculated the burns required
to reach those waypoints. Experimental results showed that with minimal training,
“non-astronaut aerospace professionals” were able to design complex maneuvers sub-
ject to constraints to recover simulated objects released from the space station in
under 2 min. Even though this was an iterative process that could conceivably be ac-
complished through computer automation, at the very least this experiment provides
a benchmark to evaluate such an automatic system.

In the system described above, increased performance was achieved through 3-D
graphics displayed on a standard 2-D monitor. While this is sufficient in some circum-
stances, others missions require an interface capable of conveying more information.
For the constraints listed above in the PROX-OPS missions, such as clearance from
structures and the directions of approach velocities and thruster plumes, this infor-

2



Figure 1: Reproduction of screenshot of interactive trajectory planning tool[6], show-
ing planning of PROX-OPS recovery mission.

mation would take the form of an increased awareness of the geometry of the area in
question. Immersive 3-D graphical interfaces are often used to achieve this so called
“telepresence”, described as “a form of electronically mediated presence providing
high-fidelity remote control by projecting natural human capabilities to distant work
sites”.[7]

One example in the literature of such a system was the Telepresence-controlled
Remotely Operated underwater Vehicle (TROV)[8]. This system consisted of an un-
dersea vehicle piloted remotely to explore the marine environment beneath Antarctic
ice. The motivation was to test future space systems and their control interfaces in
environments and situations analogous to those which they might encounter during
operation. One method of remotely controlling the TROV was accomplished with
the Virtual Reality Vehicle Interface (VEVI), in which an operator located at NASA
Ames Research Center in California controlled the actual TROV from within the
graphical simulation (Fig. 2). The undersea terrain models in VEVI were generated
using real sensor data from the TROV, and the operator viewed the simulation using
either a Head-Mounted Display (HMD) or a stereo monitor. The results gathered
from this system showed that the immersive VE allowed the operator to achieve a
level of spatial orientation and understanding despite little or no foreknowledge of the
operating environment.

Another example of an unconventional display system used to control space-
related hardware is the Mars Pathfinder mission[9]. The martian lander used a high-
resolution narrow field of view stereo-camera called the Imager for Mars Pathfinder
to send images of the landing site back to Earth. Then a 3-D terrain map was gen-
erated by comparing the stereo images, and the data feed into a computer generated
graphical environment3. The controllers could then navigate in this VE and specify

3



Figure 2: Screenshot of VEVI showing computer generated models of TROV and
undersea environment.

science targets or movement commands to the rover. Like the TROV, this system
allowed the controllers increased situational awareness despite the extreme distances
and unknown environment. Another noteworthy result was that even though the
rover was not directly controlled, the interface allowed high-level commands to be
issued to the rover with confidence while the onboard autonomous control system
managed the low-level control tasks.

Figure 3: Screenshot of the VE used by Mars Pathfinder mission.

As a final example, researchers at Caltech developed an interactive trajectory
planning tool to design orbits related to the Terrestrial Planet Finder mission[10].
This astronomy mission called for transfer orbits from Earth to the L2 Lagrange
point, where a formation of 5 satellites would enter a halo orbit and form an infrared
interferometer. In order to better visualize and design these complex transfer orbits
and satellite formations, a semi-immersive VE was created for use on a Responsive
Workbench (Fig. 4). The designer would view a 3-D representation of a region of
low-energy transfer orbits, and select different orbits using a tracked input device.

4



Using this system allowed better understanding of the complex geometry associated
with both the transfer orbit and the formation flying. Additionally, this tool was
useful for conveying these unfamiliar orbits to others in industry.

Figure 4: Screenshot of the VE used by Terrestrial Planet Finder mission.

While these examples represent only some of the various applications of VEs re-
lated to spacecraft control, they highlight some important features. The intent of the
system currently under consideration is the direct manual control of the spacecraft
simulators from within the CAVE; however, in the future the system could certainly
find other uses related to research in the SSSL. For example, the VE could be used
to evaluate an autonomous satellite control scheme, or visualize a formation of space-
craft simulators. Regardless of the specific application, “the most successful visual
interface will be the one that maximizes the operator’s ability to apply his or her su-
perior perceptual and judgement abilities to the control problem at hand.”[11]. Thus,
the CAVE is merely one option, which under given circumstances, could be a tool
which allows the user to apply these judgemental abilities.

5



3 CAVE Graphical Simulation

This section contains a brief description of the programming interfaces used to vi-
sualize the graphical simulation in the CAVE, followed by descriptions of the two
separate VEs created.

OpenGL Performer from SGI is a software API that is built on the OpenGL
graphics library. The code used in the current system was written using C++, but C
versions of Performer also exist. Since Performer is considered a high-level program-
ming language, the programmer is relatively shielded from the low-level OpenGL in-
teraction with graphics hardware[12]. This makes development of high performance
graphical simulations possible without a steep learning curve.

Another benefit of Performer is that an open source evaluation version is available
to run on a PC using GNU/Linux1, provided the PC has powerful enough graphics
hardware. The graphical simulation seen here was developed on the author’s PC
running Red Hat Linux 7.3 and Performer 2.5, equipped with an NVidia GeForce4
Ti 4200 graphics card.

The general procedure to load Performer graphics into the CAVE is to first break
up the desired scene into logical components, compile each separately as a different
graphics file, then combine the components into the final Performer CAVE simula-
tion. For example, the orbital scene is divided into the earth, reference frames, planes,
etc. The geometry and appearance of each is written in Performer’s C++ API, then
the scene graph is compiled and exported as a .pfb file, which is the native database
format used by Performer[13]. Each of these .pfb files is then attached to a coordinate
system in the main DPF program to be run in the CAVE.

3.1 Orbital Environment

The initial scene created for the CAVE consists of a preliminary version of an orbital
environment (Fig. 5). The main features include a textureless Earth, the earth-
centered inertial and perifocal reference frames, the orbital and equatorial planes,
and a star field. The star field came as a pre-made file included with Performer.
The properties of the orbit are determined by the orbital elements: semi-major axis
(a), eccentricity (e), inclination (i), right-ascension of the ascending node (Ω), and
argument or periapsis (ω). Currently this simulation is entirely static; if the orbital
elements need to be changed, the program must be re-compiled.

This scene served two primary purposes: to test writing Performer simulations
and loading them in the CAVE, and to evaluate how an orbital environment would
look in an immersive VE.

Even though this is a preliminary version of an orbital environment represented in

1As of Performer 3.0, a Windows version is also available. However, DIVERSE currently only
runs on GNU/Linux or IRIS. For more information on DIVERSE, DIVERSE Graphics Interface to
Performer (DPF), or DIVERSE ToolKit (DTK), please see www.diverse.sourceforge.net

6



Figure 5: Screenshot of orbital environment, shown in DPF desktop CAVE simulator.

a VE, some traits become apparent. For users who have little previous experience with
astrodynamics or orbital elements, the simulation provides a readily understandable
representation of the orbit in 3-D space.

3.2 Spacecraft Simulator

The next scene created for the CAVE is a graphical representation of the Whorl1
spacecraft simulator located in the SSSL (Fig. 6). This model consists of some
simplified components of the simulator mounted on a hexagonal test-bed, as well as
body-fixed and inertial reference frames. This early model does not contain much de-
tail, but serves the purpose of the reminding the user that what he or she is viewing
represents the actual test-bed and simulator hardware, rather than a general model
of a spacecraft.

Unlike the orbital scene, this graphical simulation is dynamic; the model is at-
tached to a coordinate system which can change its position and orientation with
respect to the origin of the CAVE, or the so called “world” coordinates. This allows
the model of Whorl1 to be animated by external data. The current means of rotating
models in Performer is with an heading-pitch-roll (HPR) combination of rotations. If
the rotations are taken about a reference frame which remains aligned with the world
coordinate system, these HPR rotations correspond to a 3-1-2 Euler angle rotation
sequence[14], the development of which follows in the next section.

7



Figure 6: Screenshot of Whorl1 graphical model, shown in DPF desktop CAVE sim-
ulator.

4 Animation using Attitude Data

A number of different methods were tested to animate the model of Whorl1, with the
two most significant presented here. What follows is a development of the attitude
kinematics used to animate the CG model of Whorl1 in the first method. Then a
description of the two sources of attitude data used to animate the model will be
given. The first involved integrating the kinematic differential equations of motion
(EOM) to generate “fake” attitude data off-line, then animating the model using this
pre-generated data. The second involved reading the Euler angle rates sensed by
the rate gyro located on Whorl1, and sending this attitude data to the application
running in the CAVE.

4.1 Attitude Kinematics

For the development of the kinematic differential EOM, the spacecraft simulator is
approximated as a simple rigid body, and the attitude is represented by a rotating
reference frame. The two frames of interest are the body frame, Fb, which remains
fixed to the center of mass of the satellite, and the inertial frame, Fi, which remains
fixed in the lab. The inertial frame can be thought of as being fixed on the mounting
stand which supports the Whorl1 simulator. It should be noted that this is not a
true inertial frame, but this approximation is made for these experiments.

For the reasons stated above concerning the HPR rotations in Performer, a 3-1-2
Euler angle sequence was chosen to rotate Fb about Fi. The individual rotations are
defined as:

8



R3(θ1) =

 c1 s1 0
−s1 c1 0
0 0 1

 ;R1(θ2) =

1 0 0
0 c2 s2

0 −s2 c2

 ;R2(θ3) =

c3 0 −s3

0 1 0
s3 0 c3

 (1)

where cn = cos(θn) and sn = sin(θn) for n = 1, 2, 3. The subscript on the rotation
represents the axis about which it is taken, i.e. R3 is a rotation about the î3 axis.
Likewise, the subscript on the rotation angle represents the order in the sequence, i.e.
R3(θ1) signifies the first rotation is a “3”-rotation of the amount θ1.

The 3-1-2 Euler angle sequence is then determined by multiplying the matrices in
Eq. (1):

R2(θ3)R1(θ2)R3(θ1) =

c1c3 − s1s2s3 s1c3 + c1s2s3 −s3c2

−s1c2 c1c2 s2

c1s3 + s1s2c3 s1s3 − c1c3s2 c2c3

 (2)

The angular velocity of Fb with respect to Fi is expressed in vector notation as:

~ωbi = ~ωbi′′ + ~ωi′′i′ + ~ωi′i (3)

where ~ωi′i is the angular velocity of Fi′ about Fi, ~ωi′′i′ is the angular velocity of
Fi′′ about Fi′ , and ~ωbi′′ is the angular velocity of Fb about Fi′′ . These intermediate
reference frames are a consequence of using the 3-1-2 Euler angle sequence, i.e. Fi′

is the intermediate frame that results from R3(θ1). The vector notion in Eq. (3) is
replaced with matrix notion, where the subscript represents the reference frame in
which the individual angular velocity vector is expressed:

ωi′i
i = ωi′i

i′ =
[
0 0 θ̇1

]T
(4)

ωi′′i′

i′ = ωi′′i′

i′′ =
[
θ̇2 0 0

]T
(5)

ωbi′′

i′′ = ωbi′′

b =
[
0 θ̇3 0

]T
(6)

It should be noted that the angular velocity between two reference frames can be
expressed in either frame, since the axis of rotation remains the same before and after
the rotation is performed.

The angular velocities must be expressed in the same reference frame in order to
be added together in Eq. (3); this is done by rotating them all into the Fb frame
using the necessary rotations in the 3-1-2 Euler angle sequence. Eq. (6) is already
expressed in Fb. Eqs. (4 & 5) are expressed in Fb as follows:

ωi′i
b = R2(θ3)R1(θ2)ω

i′i
i′ =

c3 0 −s3

0 1 0
s3 0 c3

1 0 0
0 c2 s2

0 −s2 c2

 0
0

θ̇1

 =

−s2c3θ̇1

s2θ̇1

c2c3θ̇1

 (7)

9



ωi′′i′

b = R2(θ3)ω
i′′i′

i′′ =

c3 0 −s3

0 1 0
s3 0 c3

θ̇2

0
0

 =

c3θ̇2

0

s3θ̇2

 (8)

Thus, Eq. (3) is written as:

ωbi
b =

 0

θ̇3

0

 +

c3θ̇2

0

s3θ̇2

 +

−s2c3θ̇1

s2θ̇1

c2c3θ̇1

 =

c3θ̇2 − s3c2θ̇1

θ̇3 + s2θ̇1

s3θ̇2 + c2c3θ̇1

 (9)

Using Eq. (9) to relate angular velocity to the rate of change of Euler angles yields:

ωbi
b =

−c2s3 c3 0
s2 0 1

c2c3 s3 0

θ̇1

θ̇2

θ̇3

 (10)

Eq. (10) is customarily written as:

ωbi
b = S(θ)θ̇ (11)

which can then be rearranged by taking the inverse of the S(θ) matrix:

θ̇ = S−1ωbi
b =

−s3/c2 0 c3/c2

c3 0 s3

s2s3/c2 1 −c3s3/c2

ω1

ω2

ω3

 (12)

Thus, if the angular velocity in the body frame is known as a function of time, the
individual Euler angle rates can be calculated.

4.2 Animation Method 1: Pre-generated Attitude Data

The first method used to animate the model of Whorl1 involved numerical integration
of the kinematics differential EOM. A schematic of the system can be seen in Fig. (7).

First, Eq. (12) was numerically integrated in MATLAB using the ode45 func-
tion. This built-in function is part of MATLAB’s suite of ordinary differential equa-
tion solvers, and uses an explicit one-step Runge Kutta integrator of 4th or 5th order
[15]. The right-hand side of Eq. (12) was included as part of a function M-file, called
“RHS.m” in Fig. (7), with an input argument consisting of the state vector at the
current time step:

X =
[
θT, ωT

]T
(13)

and a return value consisting of the rate of change of the state vector:

Ẋ =
[
θ̇

T
, ω̇T

]T

(14)

10



Figure 7: Diagram showing layout of the first system to animate the model using
pre-generated attitude data.

The θ̇ vector is specified by right-hand side of Eq. (12), and the ω̇ vector was chosen
to replicate the motion of the Whorl1 simulator, i.e. steadily increasing rotation
about the b̂3 axis, and oscillatory rotation of small magnitude about the b̂1 and b̂2

axes:

ω̇bi
b =

 0.025 sin(t)
−0.025 sin(t)

e−t

 (15)

The “W1Driver.m” MATLAB program then calls the “RHS.m” M-file through the
ode45 function call, at a time step of 0.05 sec for a time interval of 20 sec. The
resulting 3-1-2 Euler angles are output to both a plain text file and a MATLAB plot,
seen in Fig. (8). The text file “Euler312.txt” is saved and transferred to the SGI
system running the CAVE.

The next part of the system consists of a program to read from the text file con-
taining the pre-generated Euler angles and write to a DTK shared memory segment.
This program, called “writeEuler.C” in Fig. (7), reads the rotation angles from the
text file at a specified rate using the methods included in the dtkTime class, and
writes them to the DTK shared memory segment “attitude”. In this case, the rate
is the same as the time step used for the numerical integration; the Euler angles are
written to shared memory once every 0.05 sec.

The “attitudeDTKtoDPF.C” program is based on the “joystickDTKtoDPF.C”
sample program included with the 2.1.0 version of DPF. The “attitudeDTKtoDPF.C”

11



Figure 8: MATLAB plot showing the 3-1-2 Euler angles generated by numerically
integrating the kinematic differential EOM.

program contains a modified version of the dtkInValuator class, which uses inher-
ited methods from the dtkAugment class. Essentially, the dtkAugment class contains
methods to augment the functionality of DPF using pre-defined callback functions
(ref DPF manual). An example of a typical dtkInValuator object would be a joystick
or pointer device. In this case, “attitudeDTKtoDPF.C” associates the three float

values in “attitude” with three variables in the CAVE application to control the HPR
rotations of the Whorl1 model. The “attitudeDTKtoDPF.C” program is compiled
into a DSO, which can then be loaded to or unloaded from a running DPF appli-
cation. Once loaded, the DPF application reads the values in the “attitude” shared
memory segment at a high rate, such that when the “writeEuler.C” program writes
the pre-generated Euler angles at its specified rate, the model in the CAVE appears
to be updated at nearly the same rate.

The dtk-floatSliders program seen in Fig. (7) is included with DTK, and is a
simple GUI to read or write to shared memory. This is used to verify the Euler an-
gles are being written to the “attitude” shared memory properly, as well as manually
move the Whorl1 model to verify the “attitudeDTKtoDPF” DSO is working properly.

12



4.3 Animation Method 2: Rate Gyro Attitude Data

The second method to animate the CG model of Whorl1 in the CAVE uses actual
attitude data sensed by the rate gyro located on the spacecraft simulator. The system
used here, seen in Fig. (9), is notably more complicated then the previous system.
However, since the CAVE application is updated using the actual information from
the spacecraft simulator, this system has more potential uses. It should be noted
that some of the components in this system are temporary solutions to problems
encountered during its development, and more efficient means with fewer separate
programs should be used in future implementations.

This section will be divided into descriptions of the system, problems encountered,
and early experimentation.

4.3.1 Organization of System

The rate gyros measure the θ̇ expressed in the body frame, with Fb specified on the
inertial measurement unit (IMU) (Fig. (10). The reference frame shown in Fig (6)
approximately corresponds to Fb as defined by the orientations of the rate gyros.
However, there are some small discrepancies between the two: the IMU is not located
exactly at the center of the body, as shown in the CG model, and the test-bed as
shown in Fig (6) is not oriented properly with respect to the b̂1 and b̂2 axes. Due to
other limitations in this system described below, the main interest is rotation about
the b̂3, and thus these discrepancies are negligible for these preliminary tests. Also,
since this early CG model of Whorl1 is a simplified version of the actual test-bed, the
orientation of the reference frames in the CAVE simulation is the primary concern.

The first part of this system is the program called “dmuDTKTest.c” running on
Whorl1’s PC-104 computer. This program is largely based on the code written pre-
viously2 to read the data from the IMU. The additional code written for the current
system writes the θ̇ values to a socket connection over the wireless LAN. The socket
is read by the “dmu2ShMem.C” program running on a PC located in the SSSL. This
PC uses Debian Linux as its operating system, and has a connection to the wireless
LAN hub and an ethernet connection to the internet. The main purpose of this pro-
gram is to write the θ̇ values to the “thetaDot” shared memory segment for use by
other local processes.

Next, the “thetaDot2attitude.C” program reads the θ̇ values from the “thetaDot”
shared memory, performs a numerical integration, and writes the resulting θ values
to another local shared memory segment, “attitude”. The integration is a simple
Euler integration, where the average of the previous value and the current value is
multiplied by the time interval. This program also uses the methods in the dtkTime

class to control the time-dependant calculations.

2This previous code was written by Cengiz Akinli of the SSSL. All of the calibration and bias
values in this code remains the same as determined previously by him.

13



The dtk-floatScope program is another GUI included with DTK, which is useful
for evaluating different components in the system. This program simulates an oscil-
loscope by reading from shared memory and displaying the values in a time-swept
graphical form. Fig. (11) shows two dtk-floatScopes’s connected to the “thetaDot”
and “attitude” shared memory segments. The noisiness of the IMU data can clearly
be seen in the “thetaDot” values displayed on the oscilloscope.

One the CAVE-side of the system, there is another local DTK shared memory
segment call “attitude”. Like the first system using the pre-generated attitude data,
the values in “attitude” are read by the “attitudeDTKtoDPF” DSO and the CAVE
model is updated accordingly. Thus, what remains is to connect the two shared mem-
ory segments using the dtk-server program.

4.3.2 Early Problems

This remote shared memory connection leads to one of the major problems encoun-
tered during the development of this system, which concerns compatibility issues
between the GNU/Linux and SGI IRIS operating systems. Namely, IRIS uses the so
called “big-endian” byte ordering convention, whereas GNU/Linux uses the “little-
endian” convention. Thus, even after the two shared memory segments are connected,
the float values read by the program running on IRIS are meaningless since the byte
order is different.

Apparently there exist functions to correct this problem, such as the swab system
call. However, after spending time attempting to alleviate the problem this way to
no avail, a “homemade” solution was devised. Thus solution is by no means the most
efficient way, and should be replaced in future systems. The basic approach is to
break each float theta value up into 5 integer fields: 1 field for the sign, the other
4 fields each hold 2 digits, i.e. the floating point angle -125.426286654... has the
fields

[
0 01 25 42 63

]
. The first field is a 1 or 0 depending on the sign. These

fields are then converted to type char, giving a total of 15 char’s for the 3 Euler
angles. This is the reason for the “charAttitude” shared memory segments seen in
Fig. (system2); since the char values in shared memory are only 1-byte long, there
are no byte-ordering problems.

However there are disadvantages associated with this method. The obvious one
is that the system requires two extra shared memory segments to hold the ‘charAt-
titude” data. Also the ”att2charAtt.C” and ”read3charTest.C” programs must be
used to convert the attitude from 3 float’s to 15 char’s, and back to 3 char’s. Some
fidelity is lost in the attitude data as well, since only 4 decimal places are retained.
Despite the added complexity, this is a sufficient “quick-fix” for this preliminary ver-
sion of the system.

Another problem worth mentioning is associated with the data read from the rate
gyros. When the angular rates were displayed on the dtk-floatScope oscilloscope
program while the simulator was rotated by hand, it became apparent that for some

14



rotations, the angular rates became either discontinuous or fluctuated between ex-
treme values. The only usable values were obtainable through carefully controlled
rotations of the simulator. For example, if the simulator was balanced and nearly
brought to rest, the angular rates about all three axes fluctuated close to zero. If
the simulator was rotated slowly, less than approximately 5 deg/sec in a negative
direction about the b̂3 axis, with the other two rotations kept at a small rate, the
angular rates appeared correct despite slight noise in the readings. However, if the
simulator was rotated in the opposite direction, or the rotations about the b̂1 and b̂2

axes exceeded approximately 1 deg/sec, then the values became discontinuous and
unusable.

4.3.3 Experimentation

It was determined that a simple test could be performed if the simulator was rotated
by hand within the constraints described above. Once the connection was established
between the two sides of the system, and the attitude data was converted successfully,
a simple test was conducted to animate the CG model in the CAVE using the actual
motion of the simulator. This required one person in the SSSL to move Whorl1 by
hand, and another person in the CAVE to view the graphical simulation.

First, Whorl1 was brought as close to rest as possible, so that when the numerical
integration began, the initial conditions for the Euler angles could be assumed as zero.
Stated another way, Fb was assumed to be initially aligned with Fi. The simulator
was then slowly rotated about the -b̂3 axis.

Data from this experiment were output to a text file, which were plotted in MAT-
LAB and appear in Figs. (12 & 13). Similar to the dtk-floatScope display, the
plots show the variations in θ̇ and θ over time. Fig. (12) shows that θ̇3 increased
from near 0 deg/sec to about 2 deg/sec during the first 10 seconds, at which point
it continued to rotate at that rate until around 40 sec. During this same time, θ̇1

oscillated between 0 and 0.5 deg/sec and θ̇2 oscillated between 0 and -1 deg/sec. This
indicates the table was likely off balance slightly, combined with the fact that the ini-
tial torque given to the simulator was likely not entirely about the -b̂3 axis. Likewise,
the plot in Fig. (13) for this time span shows a steadily increasing θ3, whereas the
other two rotations remain near zero.

At a time of 40 seconds, an additional toque was applied by hand to the simulator,
which is seen in the rise in θ̇3 from 2 deg/sec to about 4 deg/sec. As expected, θ3

increases at a steeper rate in Fig. (13). Likewise, the oscillations about the other
two axes increase in magnitude, such that beginning at a time of 50 sec, the θ̇2 value
jumps discontinuously to values around 12 deg/sec. Because the numerical integra-
tion is still including these extreme values, the θ2 line begins veering off course, at
which point the simulation begins to break down.

15



4.3.4 Discussion

Despite the noise in the data, and the limited range of movement for which the mea-
sured values have meaning, this early experiment serves to show the potential for this
system to be used to accurately visualize the motion of the spacecraft simulator in
a VE. Some factors that need addressing include: proper selection of biases or other
scaling factors for the IMU, further understanding of why the θ̇ become discontinuous
at some levels, and the use of other attitude measuring techniques. Ideally, for any
future system to be useful, multiple attitude sensors should be included in a Kalman
filter.

However, in the short term, there are definite areas in which the current system
can be improved. The problem described previously regarding the cross-platform
compatibility can be solved in a more elegant way. This will reduce the number of
different programs and shared memory segments in the system.

With regard to control, the next step is to attempt to control the simulator from
within the VE, as part of some manual control scheme using the compressed air
thrusters. While this might prove difficult given the current sensitivity of the system,
as illustrated above, it actually presents an interesting opportunity. One of the is-
sues this research hopes to address is how well an operator can control the spacecraft
simulator, given certain constraints, from within a VE. As described in the literature
review, this normally might take the form of clearance from structures, approach ve-
locities, and other issues related to PROX-OPS. In this case, the constraints involve
limitations in the current spacecraft simulator hardware, such that it can only be
moved in a certain way in order for the attitude data to have meaning. Thus, even
though the constraints are somewhat self-imposed, it still allows for further studies
to be conducted.

5 Conclusion

The following topics were presented in this paper. A summary of the literature
review was given, highlighting the issues and applications related to manual control of
spacecraft, associated display types, and uses for VE’s. This review was not limited to
spacecraft, but included other remotely operated vehicles and control methods. Two
different methods were experimented to animate a model of the spacecraft simulator in
the CAVE. One involved numerical integration of the kinematic differential equations
of motion to generate rotation angles off-line. The other used attitude data from
the rate gyro hardware on the simulator, which were sent over the network at near
realtime. The problems associated with the current system were discussed, and ideas
to work around these problems in the short term, as well as long term goals, were
given.

16



References

[1] Kelso et. al. DIVERSE: A Framework for Building Extensible and Reconfigurable
Device-Independent Virtual Environments and Distributed Asynchronous Simu-
lations. Presence, 12(1):19–36, Feb 2003.

[2] A. R. Brody et. al. Interactive displays for trajectory planning and proximity
operations. Journal of Spacecraft and Rockets, 30(4):514–518, Jul-Aug 1993.

[3] A. J. Grunwald and S. R. Ellis. Visual display aid for orbital maneuvering:
Design considerations. Journal of Guidance, Control, and Dynamics, 16(1), Jan-
Feb 1993.

[4] A. R. Brody and S. R. Ellis. Manual control aspects of space station docking
maneuvers. In Proceedings of the 20th Intersociety Conference on Environmental
Systems, Williamsburg, Virginia, Jul 1990. Society of Automotive Engineers.

[5] Personal discussion, Chris Hall, Professor, Virginia Tech Department of
Aerospace and Ocean Engineering, Jan 2003.

[6] A. J. Grunwald and S. R. Ellis. Visual display aid for orbital maneuvering:
Experimental evaluation. Journal of Guidance, Control, and Dynamics, 16(1),
Jan-Feb 1993.

[7] M. W. McGreevy and C. Stoker. Telepresence for planetary exploration. The In-
ternational Society of Optical Engineering, 1387 Cooperative Intelligent Robotics
in Space:110–123, 1990.

[8] Carol Stoker. From antartica to space: Use of telepresence and virtual reality
in control of a remote underwater vehicle. The International Society of Optical
Engineering, 2352 Mobile Robots IX :288–299, 1994.

[9] L. A. Nguyen et. al. Virtual reality interfaces for visualization and control of
remote vehicles. Autonomous Robots, 11:59–68, 2001. Kluwer Academic Pub-
lishers.

[10] K. Museth et. al. Semi-immersive space mission design and visualization: Case
study of the terrestrial planet finder mission. In SIGGRAPH Proceedings on
Visualization, volume 21-26, pages 501–599. IEEE, Oct 2001.

[11] H. L. Alexander. Experiments in teleoperation and autonomous control of space
robotic vehicles. In Proceedings of the 10th American Control Conference, pages
1474–1477, Boston, Massachusetts, Jun 1991. IEEE.

[12] Eckel et. al. OpenGL Performer: Getting Started Guide. Silicon Graphics Inc.,
2002.

[13] George Eckel. OpenGL Performer Programmer’s Guide. Silicon Graphics Inc.,
2000.

17



[14] Chris Hall. Aoe 4140: Spacecraft attitude determination and control, class notes.
Spring, 2003.

[15] Bruce Littlefield Duane Hanselman. Mastering MATLAB6: A Comprehensive
Tutorial and Reference, chapter 24, page 334. Prentice Hall, 2001.

18



Figure 9: Diagram of system used in second animation method.

19



Figure 10: Photo of Whorl1 simulator with illustration of body frame as defined on
IMU.

Figure 11: Screen shot of oscilloscope program included with DTK, here displaying
“attitude” (top) and “thetaDot” (bottom). Annotations showing scale were added
afterwards.

20



Figure 12: MATLAB plot of Euler angle rates as read from the IMU.

Figure 13: MATLAB plot of Euler angles, obtained from numerical integration.

21


