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Abstract   A review of second order tensor visualization
methods and new methods for visualizing higher order
tensors are presented.  A new visualization method is
introduced that demonstrates the property of mathematical
invariance and arbitrary transformations associate with tensor
equations.  Together these visualization methods can enhance
our understanding of tensors and their equations and can be
insightful in the analysis and interpretation of large complex
three-dimensional numerical/experimental data sets.
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1 Introduction

The advent of high performance computers (HPC) has
allowed researchers to model large three-dimensional (3D)
physics based simulations.  Physical properties predicted by
these 3D simulations often yield gradients of tensor
properties that can result in large 3D topological structures.
These tensor properties can also be a combination of
experimental and numerical results.  Tensors, their gradients,
tensor equations, and the resulting 3D topological structures
can be sufficiently complex such that researchers can benefit
from using visualization methods in the analysis and
interpretation of their HPC and experimental results.

1.1  Visualization of second order tensors: a review

Several researchers have developed useful visualization
methods that represent the more common second order
tensors such as stress. YAMAN: Either you or I can do this.
How about if you start it and I’ll add to it.

Haber, R.B. (1987): VCR-Movie entitled "Dynamic Crack Propagation with Step-
Function Stress Loading," Visualization in Scientific Computing, Ed.s, B.H.
McCormick, T.A. DeFanti, and M.D. Brown, published by ACM SIGGRAPH
Computer Graphics, Vol 21, No. 6.

Haber, R.B. (1990): "Visualization Techniques for Engineering Mechanics,"
Computing Systems in Engineering, Vol. 1, No. 1, pp. 37-50.

Delmarcelle, T.; and Hesselink, L. (1993): "Visualization of Second Order Tensor
Fields with Hyperstreamlines," IEEE Computer Graphics & Applications, pp. 25-33.

Moore, J.G.; S. A. Schorn, S.A.; and Moore, J. (1994), "Methods of Classical
Mechanics Applied to Turbulence Stresses in a Tip Leakage Vortex," Conference
Proceedings of the ASME Gas Turbine Conference, Houston, Texas, October, 1994,
(also Turbomachinery Research Group Report No. JM/94-90).

Hesselink, L.; Delmarcelle, T.; and Helman, J.L. (1995): "Topology of Second-Order
Tensor Fields," Computers in Physics, Vol. 9, No. 3, pp. 304-311.

Etebari, A. (2003): Development of a Virtual Scientific Visualization Environment for
the Analysis of Complex Flows,” (etd-02102003-133001), Electronic Thesis and
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1.2 Fundamental tensor properties

Before visualizing tensors and tensor equations, it is
important to first review some of the fundamental tensor
properties that will be visualized.

1.2.1  Iinvariance and arbitrary transformations

All tensor equations are invariant to arbitrary coordinate
transformations.  These properties can be demonstrated for
two different tensor equations that define static force
equilibrium.  The gradient of the second order stress tensor
followed by an indical contraction defines equilibrium,
[Frederick and Chang, (1997)].

sji,j = 0,                             (1)

where sji is the second order stress tensor and the subscripts,
ji, are called indices.  The indice “,j”, which operates on s ji,
represents a gradient of the second order stress tensor.  In this
case the indice, “j”, associated with the gradient is contracted
(“summed”) with one of the indices on the stress tensor
where the surviving “free” indice, “i”, is then associated with
a force vector or first order tensor.

Figure 1:  Equilibrium tetrahedron element where nj is
perpendicular to plane (P1P2P3).

The derivation of Cauchy’s relation also assumes static force
equilibrium.

si  = sji nj        (2)

where sji  is a second order tensor, s i is a first order stress
tensor (“vector”), and nj is a unit vector perpendicular to the
plane (P1P2P3) on which the first order stress tensor acts,
Fig.1.

Equilibrium can be visualized by using a simple free body
diagram, Fig.1.  The three components of the first order stress
tensor, si, act on plane (P1P2P3) and balance with the six
symmetric components of the second order stress tensor, sji,

which act on the adjacent orthogonal surfaces at point P.
First and second order stress tensors components exist at
point P in the limit as points P1, P2, and P3 approach point P
[Frederick and Chang, (1972)].

The existence of static force equilibrium can be tested by
arbitrarily transforming Eq.2 in Rectangular Cartesian
Coordinates (RCC) space, xi, where xi transforms as a first
order tensor.

x'p   = apj xi   or xi  = api x'p        (3)

Similarly, the terms in Eq.2 exist in RCC space and are
tensors that transform as first and second order tensors:

n'p   = apj ni   or nj  = apj n'p,                     (4a)

s'r   = ari si   or si  = ari s'i,                                (4b)
s'mn = amj ani sji      or sji  = amj ani s'mn,       (4c)

where aij are direction cosine matrices (not tensors) that
transform any n-th order tensor from the initial “unprimed”
coordinates into the transformed “primed” coordinates.  This
transformation is valid for any arbitrary transformation.
Quantities can only be labeled as an n-th order tensor if they
transform as an n-th order tensor.

If Eqs.4 are substituted into Eq.2, the transformation matrices
combine into Kronecker deltas, which exchange indices and
the resulting equation maintains its’ form (“invariant”) but
now in the transformed primed RCC system.

s'p  = s'qp
 n'q                       (5)

Similarly Eq.1 can be transformed into the primed RCC and
maintain its’ form.

s'ji,j = 0                             (6)

An equation can only be called a tensor equation if each term
in the equation transforms such that the equation remains
unchanged (“invariant”) and does so for any arbitrary
transformation.  The implication here is that the mathematical
ideas of invariance  and arbitrary transformations are
consistent with our idea of a physical law.  In this case the
law of static force equilibrium.  Where does equilibrium
exist?  –  everywhere (“invariant”) and does so using
arbitrary transformation.  These properties, which are
inherent properties of all tensor equations, will allow us to
visualize properties associated with tensor equations.  It is
essential that the ideas of invar iance and arb i t rary
transformations be understood in order to grasp the idea of
the visualization methods presented here.  Invariance in a
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graphical sense will be also used to visualize the invariance
in a tensoral sense.

1.2.2  Eigenvalue-eigenvector decomposition of the second
order stress tensor

For first order stress tensors, si, there is one special direction
for ni where si and ni are parallel and the shear component of
si acting on plane (P1P2P3) is by definition zero.  Such a
direction is called a principal direction.

 si = s ni        (7)

For any second order stress tensor, sji there are three
mutually orthogonal directions (“eigenvectors”) and their
corresponding magnitudes (“eigenvalues”) where the shear
stress component is zero, which defines the principal stress
state.  Combining Eq.1 and Eq.7 yields the equation for
solving for these three eigenvalues, s , and their
corresponding eigenvectors, ni,

( sij – s dij ) xi = 0,        (8)

where nj is rewritten as xi which represents the principal
stress state orientation shown in Fig.2.

The three eigenvalues (sa, sb, sc) are often envisioned as an
ellipsoid whose major, medium, and minor axes represent the
largest, intermediate and smallest magnitudes of the three
eigenvalues and the orientation of this ellipsoid represent the
eigenvector direction cosines, xi, of a principal stress state.
This ellipsoid will be referred to as the stress ellipsoid.

A1 x
2  + A2 y

2  + A3 z
2  + A4 xy +A5 xz + A6 yz +

A7 x + A8 y+A9z + A0  = 0        (9)

Although Eq.9 is not a tensor equation, it is none-the-less
useful for visualization of principal stress states, but the link
between graphical invariance and mathematical invariance
does not exist.

2.1 Stress Quadric Surface

A second order symmetric tensor can be represented with
ellipsoids by means of two entirely different methods.  The
eigenvalue-eigenvector decomposition, previously described,
has been more commonly used to visualize stress as a stress
ellipsoid.  There is yet another ellipsoid surface that can be
constructed from the stress tensor; the stress quadric
[Frederick and Chang, (1972)].

sij xixj =  ± k2
       (10)

This stress quadric is a scalar tensor equation that can also be
expanded into terms that fit the polynomial in Eq.9, where

A0 = ± k2, A1 = s11, A2 = s22, A3 = s33, A4 = (s21 +s12),

A5 = (s13 +s31), A4 = (s23 +s32) and A7 = A8 = A9 = 0      (11)

Hence the stress quadric is a tensor equation that also
becomes a closed surface ellipsoid and is called the stress
quadric surface.

Figure 2: Stress quadric surface at P is aligned along the
principal axes, xi, and shows only a portion of the ellipsoid.

In Fig.2 point P is the same point P in Fig.1 where both si

and s ij coexist and the plane in Fig.2 is the same plane
(P1P2P3) in Fig.1.  Unlike the stress ellipsoid, the stress
quadric surface has two properties of importance in
visualizing the state of stress [Frederick and Chang, (1972)]:

1. Let P be the center of the ellipsoid and Q  be any
point on the stress quadric surface and the distance
PQ = r . The normal stress at P , acting in the
direction PQ is inversely proportional to r2.

2. The stress vector, si, acting across the area of plane
that is normal to PQ, is parallel to the line, ∂F/∂xi,
which acts normal to the stress quadric surface at Q.

The first property is exactly the inverse of the more
commonly used stress ellipsoid and consequently the shape
of the stress quadric surface can be intuitively misleading;
the square of the length of the principal axes are inversely
proportional to the principal stresses, whereas the stress
ellipsoid visually represents the largest eigenvalue along the
major principle axis and the smallest along the minor axis.

The second property visualizes all possible orientations of the
first order stress tensor.  All line segments that are normal to
the stress quadric surface at point Q are also parallel to the
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first order stress tensor acting at point P, on a plane pointing
in the direction ni which intersects the stress quadric surface
at point Q, whereas the line segments acting normal to the
stress ellipsoid surface have no physical significance. Unlike
the stress ellipsoid, the stress quadric surface is also a tensor
equation and enjoys the property of invariance and arbitrary
transformations.  Here the arbitrary transformation can be
visualized as the collection of all line segments acting normal
to the stress quadric surfaces.

Based on these observations a new visualization method is
proposed that uses the more intuitive shape of the stress
ellipsoid to visualize the principal stress state, but also allows
the second property of the stress quadric to be visualized as
an arbitrary transformation of the first order stress tensor.

2.2 A new method: visualization of stress quadric normal and
shear components mapped onto the stress ellipsoid

In Fig.2 the first order stress tensor, si, can be resolved into
two components; 1) normal components acting parallel to ni,
and 2) shear components acting parallel to the plane.  The
orientation of large shear stresses can be an important factor
in predicting stress-induced deformations and crack
propagation.  The eigenvalue-eigenvector decomposition of
any second order stress tensor is a transformation where the
principal axes, xi, represent directions where the shearing
stress is zero.  Therefore the orientation of nonzero shear
stresses would exist somewhere in between the principal
axes, xi.  On the stress quadric surface pure shear would be
viewed as line segments normal to this surface but at the
same time acting parallel to the plane at point P.  All these
line segments would however be difficult to visualize, so the
angle between s i and the unit normal, ni, at point P  is
represented as a color at point Q.  This color would represent
the components of normal and shearing stress at point P by
an angle, which is calculated using the stress quadric surface,
but mapped as color onto the stress ellipsoid surface at point
Q .  Hence all of the components of the first order stress
tensor, sj, in any arbitrary direction, ni, can be visualized as
a color which is mapped onto the stress ellipsoid surface that
represents the principal stress state of sij.

Let P be the center of the ellipsoid and Q be any point on the
stress ellipsoid surface.  The direction cosines of PQ are

ni = xi / r ,      (12)

where r = |PQ|.  The stress vector, s i, in this direction is
given by Eq.2 and the angle between the unit normal, ni, to
the plane and the stress vector, s j, acting on that plane is
calculated using the scalar product of the stress vector, si,
and ni.

q = cos –1{si ni  / |si |}      (13)

Figure 3: Color map of normal and shear stress on a stress
ellipsoid where data was taken from [Harting, (1998)].

This angle can now be mapped as a color on a stress ellipsoid
surface, where ni intersects this surface at point Q.  Using a
standard rainbow color spectrum 0° (purple) corresponds to
pure tension, 90° (green) to pure shear, and 180° (red) to pure
compression.  The shearing stress is visualized as green
bands of color traversing the ellipsoid surface, Fig.3.  This
technique can be used to observe shear stress of stress tensors
that were calculated from experimental data of a shot peened
material [Harting, (1998)].

2  Visualization of stress gradients

Visualization of second order stress tensors can be
envisioned by drawing a collection of evenly space stress
ellipsoids or stress quadric surfaces in RCC space.  Either of
these closed ellipsoidal surfaces are referred to as a “glyph”.
The center glyph is used as the reference glyph and the
surrounding glyphs are located at evenly spaced distances,
±Dx, ±Dy, and ±Dz, which would be seen as a collection of
glyphs located to the north, south, east, west, front, and back
of the center glyph, Fig.4.

If the glyph spacing is small but the 3D collection of glyphs
does not obscure the viewer from seeing how glyphs change
their shape and orientation, than the viewer is seeing the
stress gradient as a discrete change in space.

Dsij / Dxk      (14)

In the limit as Dxk goes to zero Eq.14 reduces to

sij,k,      (15)
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which transforms as a third order tensor.  Summing forces
requires a contraction on “i” and “k” indices which yields,

skj,k.     (16)

Figure 4: Stress glyph gradient where there is no change in
shape or orientation of the nearest neighboring stress glyphs.

Comparing Eq.16 with Eq.1 suggests that it may be possible
to see the stress state of static force equilibrium, but only if
the viewer can visually confirm that Eq.16 does indeed sum
to zero, on indice “k”.  Stress glyphs shown in Fig.4 are all
the same therefore the gradient, s ij,k, is indeed zero.  If the
stress glyphs surrounding the center glyph all have different
shapes and orientations than it is debatable if the observer
can envision how the summation, skj,k., goes to zero.
However any gradient in Fig.4 does indeed visually represent
force equilibrium but only in the limit as Dxk goes to zero.
This limiting process could be more accurately envisioned as
changes in the surrounding glyphs’ shape, color and
orientation as they collapse onto the center glyph from any
arbitrary direction.  Such a collection of glyphs would
visually represent the gradient in any arbitrary direction.
Because it is difficult to properly envision this limiting
process graphically using discrete glyphs, early research on
visualization of tensor tubes, allowed the viewer to envision
gradients, but only in one direction, [Delmarcelle and
Hesselink (1995)].  For example take a series of stack glyphs
in the X3 direction, Fig.5, but remove the sc component of
the glyph and scale this eigenvalue as color, which is mapped
onto the circumference of the remaining two-dimensional
(2D) ellipse and then connect all possible colored 2D ellipses
into a “tensor-tube”.  Now extend this idea in all possible
directions.  What would this graphical image look like?  One
possible implementation of this idea is to envision a 3D stress
glyph disturbance emanating from a point source, similar to
Huygen’s principle for 2D plane waves, but using 3D stress
quadric glyphs instead.  This is an interesting idea, but very
difficult to visualize.  One immediate requirement would be
that, although this surface maybe irregular, it must be
symmetric to satisfy equilibrium and its’ gradient.

Figure 5: Stacked stress glyphs and tensor tubes

Although stress glyphs are seen to occupy space, like scalar
quantities, stress glyphs represent properties that exist at
points.  But unlike scalar quantities second order stress
tensors are not invariant it arbitrary RCC transformations.
Recall quadric stress ellipsoids are visual representations of
all possible transformations at a point, therefore stress glyphs
become a graphical invariant at that point.  Of course stress
glyphs will change from point to point and so the graphical
idea of invariance  at points extends to their 3D stress
gradient structures shown in Fig.4 and Fig.5.  Hence there is
a link between graphical and tensor equation invariance not
just at points but through out RCC space.

4  Visualizing fourth order stiffness tensors

Here our objective is to look at a spherical disturbance such
as a dilatational pulse, which initially expands equally in all
directions. Invoking Huygen's principal the reader can
envision very small 2D plane waves, which exist on the
surface of a very small sphere in the center of an anisotropic
crystal. Each of these plane waves travels in a specific
direction called the pointing vector, n i, at a speed that
corresponds to elastic properties in the same direction.
Hence, plane waves traveling in different directions in an
anisotropic material will travel at different speeds and the
continuous collection of all of these plane waves, although
initially a sphere, soon deviates into a nonspherical shape
simply because plane waves will travel faster in stiffer
directions and slower in less stiff directions.

First we start with the equations of motion for a continuum.

sji,j = r  ∂ 2 ui / ∂ t2     (17)

where r is the material density and ui is the displacement.
Recall Hooke’s law for an anisotropic material,

sij = Cijkl lkl,     (18)
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and substitute the strain-displacement relationship,

lij =  ( ui,j + uj,i ) / 2   (19)

into to Eq.18 yields

sij = Cijkl uk,l     (20)

Substituting Eq.20 into Eq.17 yields the equation of motion
in terms of displacements.

∂ (Cijkl uk,l ) / ∂ xj = r  ∂ 2 ui / ∂ t2   (21)

This equation is further reduced if the material is assumed to
be homogeneous, ∂ Cijkl / ∂ xj = 0.  Next assumed a plane
wave periodic disturbance for the displacement, uk, which is
written in exponential form.

uk = A ak e i k (ni
 x

i
 – v t )  (22)

where v is the wave velocity, k is the plane wave number, ni

is the propagation direction (“pointing vector”), and a k is the
particle vibration directions.  Substituting Eq.22 into Eq.21,
reduces to an eigenvalue problem.

( Cijkl nj nl – rv2 dik ) ak = 0   (23)  (22)

This is called the Christofel’s equation of motion.  If Eq.23 is
expanded into a 3 by 3 matrix, it is perhaps easier to see that
the velocity terms along the diagonal, rv2, are eigenvalues
and the displacement direction cosines, ak, are eigenvectors.

Closer examination of Eq.23 reveals that along a prescribed
propagation direction, n j, both the eigenvalues and
eigenvectors can only be functions of the fourth order
stiffness tensor, Cijkl.  If the eigenvalues (wave speeds) are
calculated for all possible propagation directions, ni, this
would generate a 3D wave velocity surface for each
eigenvalue.  Since there are three eigenvalues, Eq.23 predicts
three wave velocity surfaces.  The eigenvectors, which are
particle vibration direction cosines, can be mapped onto
eigenvalue surfaces as color at the point where ni intersects
the wave surface.  Color is defined by the cosine of the angle,
a kn k, separating two unit vectors.  Hence color visually
defines the eigenvector (vibration direction),  a  k, with
respect to the propagation direction, n k: a kn  k = 0 (pure
longitudinal) and a kn k = 1 (pure transverse).  Using the
rainbow color spectrum, color would reveal the wave type: 1)
pure longitudinal, 0˚ or purple, 2) pure transverse, 90˚ or red,

and 3) a mode transition, 45˚ or green which would indicate a
transition from longitudinal to transverse. With colors the
observer can quickly determine the wave type and discover
locations of possible mode transitions.

Figure 6: Wave velocity (eigenvalue) surfaces for Calcium-
Formate, where color is the wave-type which is defined by
the cosine of the angle, a kn k, separating two unit vectors:
the vibration direction (eigenvector), a k, with respect to the
propagation direction, n k.

Together the three surfaces, shown separately in Fig.6 or
connected in Fig.7, uniquely represent the fourth order elastic
stiffness tensor, Cijkl, at a point.

Figure 7: Combined wave velocity surface for Calcium-
Formate where translucent outer surfaces show a single
connected surface, Cijkl [Ledbeter and Kriz (1992)].

Wave velocity surfaces are drawn for a highly anisotropic
orthorhombic crystal called Calcium-Formate, Ca[HCOO]2,
Fig.6.  Because of its’ unusual orthorhombic anisotropy, this
particular symmetry results in a single connected surface,
Fig.7, [Kriz and Ledbetter (1982)].  These geometries are
now being used as new sub-classification scheme within
orthorhombic symmetry, [Musgrave (1982)].
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The concept of second order stress tensor gradients was
presented in section 4 as a discrete event showing how the
shape and orientation of stress glyphs change as they collapse
onto a center stress glyph.  But extending this concept as a
continuous gradient in all directions was difficult to envision,
but perhaps could be approached as a dilatational pulse.  The
derivation Eq.23 assumed such a dilatational pulse, so
perhaps Eq.23 and Eq.8, which are both eigenvalue
problems, are related.  It is easily shown that there are only
two free indices in the first term of Eq.23, which can than be
rewritten as a second order tensor, bkl, and the scalar term,
rv2, can be rewritten as, b, and substituted back into Eq.23,

( bkl – b dkl ) ak = 0    (24)

where Eq.24 and Eq.8 have the same (“invariant”) form.
This supports the proposed idea that a continuous stress
gradient in all directions is equivalent to a dynamic
dilatational pulse and therefore the images (“glyphs”) shown
in Fig.7 which represent the fourth order stiffness tensor,
Cijkl, are related to the gradient of a second order stress
tensor, sji,k, Fig. 4, but in a continuous sense in all directions.

3 Visualizing zeroth order tensors and their tensor
equation invariance

Scalar variables are zeroth order tensors, which are the
easiest tensor quantities to visualize.  By definition scalar
quantities are invariant to any arbitrary coordinate
transformation at a point but can change value at adjacent
points.  This is the simplest idea of a gradient.

(25)

Figure 8: Gradients of a scalar function in parametric space
and its’ visual analog.

Gradients of scalar functions can be visualized by moving
orthogonal planes through a region of interest where color
patterns within the moving plane change as a plane moves
along one of the three independent axes, Fig.8.  Gradients in

Fig.8 demonstrate a visual analog to the mathematical
gradient operator on a scalar function, F(x,T,t), [Kriz,
(1991)].

Gradients of a scalar function can also be visualized by using
a translucent voxel volume element, which can map an entire
3D region as a single continuous function, Fig.9.  These
gradients are best viewed by a smooth and continuous
rotation [Kriz, Glaessgen, MacRae, (1997)].  This rotating
image provides a comparative format similar to Tufte's
comparison of "Tables and Graphs", where simple graphs are
superior as a comparative format but lack the quantitative
format required by scientific analysis or engineering design,
[Tufte, (1990)].  The effect of rotating voxel volume imaging
in some cases yields dramatic results, especially when the
function is continuous with several contrasting regions.

Figure 9: Translucent voxels show a continuous gas-air
gradation, [Brown and Boris, (1990)], where the 3D gradient
is viewed when rotated [Kriz, Glaessgen, MacRae, (1997)].

Rotating voxel images demonstrate the cognitive analytic
power of the mind: that is, even elaborate and expensive
computer tomography systems cannot accomplish the same
numerical reconstruction of a 3D-volume with the same
speed.  Indeed our minds are capable of reconstructing a 3D
gradient instantaneously over the entire volume.  This
example is one of the best examples of the analytic power of
visual thinking [Kriz, Glaessgen, MacRae (1997)].

Scalar quantities are also visualized using isosurfaces. In
Fig.10 only one (“iso”) value 50% of a gas-air mixture is
shown as an isosurface.  This isosurface creates a 3D
structure, which is a more quantitative measure of the gas-air
mixture.  It would be possible to show this surface growing
or shrinking as the gas-air percentage is increased or
decreased respectively. Isosurface movement is another
method used to visualize a gradient but this only works for
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small fluctuations at one particular value of the isosurface.

Often there is more than one scalar function.  For example,
pressure and temperature can simultaneously exist within the
same RCC space. With new graphical features it is possible
to extend the previous visual methods to observe how
multiple scalar functions share the same parametric space and
can also be used to test for the existence of new functional
relationships.

Figure 10: Volume visualization of the same gas-air
gradation in Fig.9 but using isosurfaces at a mixture of 50%.

The new visual method is developed in terms of multiple
parameters, which are defined either as independent or
dependent parameters.  For example visualizing the scalar
function in Fig.8 is a four parameter model where the scalar
function, F(x,T,t), is the dependent parameter and parameters
x, T, and t are the three remaining independent parameters
that are visualized as coordinate axes.  The new method
allows for n-dependent parameters and m-independent
parameters, but for simplicity only a seven parameter (n=3,
m=4) model will be developed here as an example.

In the following example seven parameters will be visualized
where four of the seven parameters are chosen as
independent variables (not necessarily RCC space) and the
three remaining parameters are scalar functions that share
that parametric space.  This example is shown in Fig.11
where the first three parameters (P1, P2, P3) are independent
variables, shown here as orthogonal axes, and the fourth
orthogonal parameter is reserved as another independent
variable that exists uniformly the same everywhere, but
which can not be drawn as an axis: i.e. P4 = time (the fourth
orthogonal axis that can not be shown).  Because the three
dependent parameters are functions that share the same
independent parametric space, only three of which can be
seen, this method provides a common basis from which to
test for the existence of relationships between these three

functions.  In this example it is important to note the
difference between the dependent parameters (P5,P6,P7),
which are functions of P1, P2, P3, and P4, and the functional
relationship between the P5, P6, and P7 functions.

The visual task is to find the functional relationship between
P5, P6, and P7, if any exists.  The key idea here is that not all
independent parameters have to be visually represented as
coordinates, but can be varied independently through an
interactive graphical interface such as a dial or slider.

At some arbitrary point in Fig.11 each scalar function has a
unique value: e.g. P5 = 80, P6 = 120, and P7 = 220, Fig.11.
Units are intentionally not shown.  Obviously these values
can change at adjacent points.  This is our idea of a gradient.
Although it is not possible to see all possible values for all
three functions in the same region, it is possible to see an
isosurface for each function as a separate shaded surface that
intersect at a common but arbitrary point.  If the observer can
interactively change the isosurface value in Fig.11 and
instantaneously observe the corresponding change in shape,
then a gradient near this point could be determined for each
function, but only in that immediate region.  For example if
the scalar property were fluid pressure it would be possible to
envision the direction of flow.

Figure 11: General parametric space (P1,P2,P3,P4) with
three arbitrary dependent parameter (P5,P6,P7) functions.

Although it is highly recommended to think of the physics as
a visual method is used to analyze a data set, the visual
method is first developed only with respect to the property of
mathematical invariance.  Hence this visual method is
generalized and can be used for any arbitrary set of scalar
functions (dependent parameters) that share a common basis.
A 3D data set without units is presented here where two of
the three dependent parameters are drawn as unique but
intersecting isosurfaces in Fig.12.  If the surfaces do not
intersect then it is not possible to determine a functional
relationship between P5, P6, and P7.  If the surfaces intersect,
then there is an opportunity to investigate if this functional
relationship is linearly proportional or inversely proportional.

It is not necessary to determine the functional form of each
dependent parameter P5, P6, and P7 by a curve fitting
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method.  In fact the functional relationship between P5, P6,
and P7 can be determined without knowing anything about
the dependent parameter functions. Many data sets are
generated by experimental scanning or numerical simulations
and lack a functional form to begin with. Curve fitting these
dependent parameter functions is avoided and our attention
focuses on how these arbitrary shapes (arbitrary functions)
relate only to each other.

If the three dependent parameters are arbitrarily chosen as
spherical functions, then P5 and P6 can be conveniently
viewed as nonconcentric intersecting spheres in Fig.12.  If P7
is antoher dependent parameter that is not related to P5 or P6,
then when P7 is mapped as a color onto the P6 isosurface,
color gradients would not be seen to align with the P5-P6
intersection in Fig.12.  Because of the small range of colors
for P7, the alignment of P7 color gradients is difficult to see
on the P6 isosurface (mostly green).  Therefore P7 is also
represented as an isosurface, which is also seen not to align
with at P5-P6 intersection and demonstrates that there can be
no functional relationship between P5, P6, and P7.  However,
if P7 is observed as a constant color near the P5-P6
intersection as shown in Fig.13 or if the P7 isosurface
intersection occurs near the P5-P6 intersection, then a simple
linear functional relationship exists between P5, P6, and P7.
In both Fig.12 and Fig.13 the independent parameter P4
(time) is held constant.

Figure 12: No relationship exists between P5, P6, and P7.  A
translucent surface P7 is drawn intersecting the P5 and P6
isosurfaces because small changes in the P7 color gradient
mapped onto the P6 isosurface is difficult to see.

Results shown in Fig.13 only confirms that a simple linear
relationships exist, which could be one of three possible
relationships:

P5 P6 P7  = constant, (26)

P5 P6 = constant P7, (27)

P5 = constant P6 P7. (28)

These equations will be eliminated or confirmed visually.

If P6 is held fixed while the P5 isosurface is arbitrarily
increased and the color or surface for P7 is observed to
increase near the P5-P6 intersection, then Eq.26 is eliminated
as a possible functional relationship.  If P5 is held fixed while
the P6 isosurface is arbitrarily increased and the color or
surface for P7 is observed to decrease near the P5-P6
intersection, then Eq.27 is also eliminated as a possible
functional relationship, but Eq.28 is satisfied where P4 was
held constant.  Finally, if parameters P5, P6, and P7 are all
held fixed and only P4 is changed and if similar intersecting
patterns are observed at any arbitrary value for P4, then the
surviving functional relationship, Eq.28 is valid over the
entire parametric space P1, P2, P3, and P4.

Figure 13: Simple proportional and inversely proportional
relationships exist for P5, P6, and P7.  P7 is rendered as a
translucent isosurface, so that the observer can better view
the small changes in color for the P7 property.

Here the mathematical idea of arbitrariness and invariance
was used to visually confirm the existence of a tensor
equation for arbitrary variations in dependent parameters P5,
P6, and P7.  In this example there are two different types of
mathematical invariance.  For Eq.28 we have a simple zeroth
order tensor equation where not only are the scalar dependent
parameters P5, P6, and P7 invariant to arbitrary RCC
transformations at a point, but the same scalar equation itself
is also invariant to any arbitrary variation that exists through
out parametric space, P1, P2, P3, and P4. Both types of
mathematical invariance are related to our idea of a physical
law.  That is, the parameters P5, P6, and P7 must always
satisfy the same relationship independent of any arbitrary
change that exists within parametric space P1, P2, P3, and
P4.  This same visual-mathematical paradigm of invariance
can be extended to higher order tensor equations.

Simple scalar relationships, such as Eq.28, commonly occur
in nature.  For example let P1, P2, P3 be RCC coordinate
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space and P4 = time, and let P5, P6, and P7 be pressure, P,
density, r, and temperature, T, respectively in Fig.14 and the
constant in Eq.28 becomes the gas constant, R.  Where does
the gas law exist? – anywhere in space (P1,P2,P3) or time
(P4) and does so for any arbitrary variations in P5, P6, or P7.

P = r R T   (29)

Figure 14: Extracting a linear zeroth order tensor equation
from numerical data of a simulation where mixing occurs in a
boundary layer at supersonic speeds, [Ragab and Sheen,
(1990)].  Temperature is left intentionally nondimensional.

4 Summary

All graphical representations of tensor properties and
functional relationships of these tensor properties in tensor
equations exist at points.  Although these graphical images
(“glyphs”) occupy space they represent properties that exist
at points and like scalar quantities these properties and how
they are visualized are invariant to arbitrary transformations
at points and through out independent parameter space.

Again it is noteworthy that verifying the existence of simple
zeroth order tensor (scalar) relationships is accomplished
without determining the functions (dependent-parameters)
P5, P6, and P7 in parametric space (P1, P2, P3, P4).
However graphical curve fitting is required but only to
visually confirm the existence of the proposed functional
relationships between P5, P6, and P7. Again the idea of
graphical and mathematical invariance is used.

Many more complex relationships can be visually extracted
from raw data by using this same method.  Many data sets are
generated by experimental scanning or numerical simulations
and lack a particular relationship to begin with.  In all cases,
just like finding solutions to differential equations, the
researcher can guess possible relationships and then confirm
them visually, because graphical and mathematical
invariance  coexist.  Here we assumed simple linear

relationships.  Using this method, researchers can explore
large complex data sets for trends and other possible
functional relationships.  A graphical invariant pattern,
associated with a relationship, is first observed then visual
cognitive thought is the mechanism that allows the
investigator to confirm the existence of the possible
relationship.  Again we use the computer to perform tedious
graphical tasks where in the past only a few gifted scientists
demonstrated an inherent ability to perform this same
graphical process psychically.
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