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(ABSTRACT) 

 

It is well known that for small Reynolds numbers, flow around a cylinder is laminar and stable. 

For larger Reynolds numbers, although the flow regime remains laminar, the formation of 

complex periodic structures appear downstream. The cyclic nature of this periodic flow is well 

characterized by the vortex shedding frequency and Strouhal number. However, complexities of 

these periodic structures downstream continue to be a topic of research. Periodic laminar 2D 

incompressible viscous flow around a cylinder is simulated using OpenFoam, an open source 

computational fluid dynamics program. To better understand these complex structures 

downstream, a customized computer graphical tool, VerFlow-V.01, was created to analyze and 

study OpenFoam simulation results. This study includes an investigation of calculating the 

details of drag and lift coefficients for the cylinder using mathematical models that integrate 

properties in subdomains, an approach not previously explored to the knowledge of the author. 

Numerical integration is accomplished using a finite difference approach for solving surface and 

contour integrals in subdomains of interest. Special attention is given to pressure and to the 

second invariant of the velocity gradient, as they have a clear mathematical relationship, which is 

consistent with results previously published. A customized visual data analysis tool, called 

VerFlow-V.01, allowed investigators to compare simulation data variables in a variety of useful 

ways, revealing details not previously understood. Main subroutines and a user’s manual are 

included as appendices to encourage reproducibility and future development of the numerical, 

analytical and graphical models developed here. Together these models resulted in a new 

understanding of periodic laminar flow around a cylinder. A unique approach was developed to 

qualitatively understand the origins of drag and lift coefficients associated with properties 

mapped as images in subdomains of interest downstream. These results explain the development 

of convergent, eddy, and stream zones embedded in flow fields downstream. 

 



iii 
 

Contents 

(ABSTRACT) ................................................................................................................................................... ii 

List of Figures ................................................................................................................................................ v 

List of Tables ................................................................................................................................................ ix 

List of Animations ......................................................................................................................................... x 

Grant Information ........................................................................................................................................ xi 

Dedication ................................................................................................................................................... xii 

Acknowledgements .....................................................................................................................................xiii 

Introduction .................................................................................................................................................. 1 

Chapter 1 .  Literature Review ...................................................................................................................... 3 

1.1. Governing Equations for Incompressible Viscous Flows ................................................................... 3 

1.2. The second invariant of the velocity gradient ................................................................................... 4 

1.3. Flow around a cylinder ....................................................................................................................... 9 

1.4. Frequency analysis ........................................................................................................................... 14 

1.5. Chapter nomenclature ..................................................................................................................... 16 

Chapter 2 .  Numerical Simulation: OpenFoam .......................................................................................... 19 

2.1. The problem ..................................................................................................................................... 19 

2.2. Boundary conditions ........................................................................................................................ 22 

2.3. The grid ............................................................................................................................................ 22 

2.4. Simulation time interval ................................................................................................................... 27 

2.5. Generating OpenFoam simulation “data” ....................................................................................... 29 

2.6. Preliminary graphical results using ParaView .................................................................................. 31 

2.7. Frequency and time resolution optimization using VerFlow_V.01 ................................................. 33 

2.8. Chapter nomenclature ..................................................................................................................... 44 

Chapter 3 .  Mathematical and Numerical Models ..................................................................................... 47 

3.1. Pressure independent of time ......................................................................................................... 48 

3.2. Q: the second invariant of the velocity gradient ............................................................................. 52 

3.3. Forces acting on the cylinder ........................................................................................................... 56 

3.4. Alternative equation for the pressure at a point 𝑷 ......................................................................... 62 

3.5. Chapter nomenclature ..................................................................................................................... 77 



iv 
 

Chapter 4 .  Results and Discussion ............................................................................................................ 82 

4.1. Forces on the cylinder ...................................................................................................................... 82 

4.2. Prediction of the pressure at a point ............................................................................................... 94 

4.3. Point effect on the cylinder boundary ........................................................................................... 102 

4.4. Contributions from 𝑸 to the drag and lift forces ........................................................................... 105 

4.5. Convergence and eddy zones ........................................................................................................ 111 

4.6. Verification of finite difference forms of 𝑸 using VerFlow-V.01 ................................................... 121 

4.7. Verification of the pressure distribution around the cylinder ....................................................... 124 

4.8. Chapter nomenclature ................................................................................................................... 128 

Chapter 5 .  Conclusions ............................................................................................................................ 131 

5.1. Programs ........................................................................................................................................ 131 

5.2. Forces on the cylinder .................................................................................................................... 132 

5.3. The second invariant of the velocity gradient, 𝑸........................................................................... 133 

5.4. Additional qualitative remarks ...................................................................................................... 135 

References…………………………………………………………………………………………………………………………………………..137 

Appendix A. General guide to modify the original OpenFoam Simulation ............................................... 138 

Appendix B. VerFlow-V.01: Main Subroutines .......................................................................................... 142 

Appendix C. VerFlow-V.01: User’s Manual ............................................................................................... 172 

Appendix D. Solution to Poisson Equation in 2D ...................................................................................... 193 

 



v 
 

List of Figures 

Figure 1.1 Representation of terms in Equation 1.8 ..................................................................................... 5 

Figure 1.2 Representation of terms in Equation 1.9. Velocities in white circles are calculated from the 

nearest in gray circles. .................................................................................................................................. 6 

Figure 1.3 General flow around a cylinder .................................................................................................... 9 

Figure 1.4 Drag coefficient and Steady (S), Periodic Laminar (PL) and Periodic Turbulent (PT) regions for 

cylinders. ..................................................................................................................................................... 10 

Figure 1.5 Regimen flows ............................................................................................................................ 11 

Figure 1.6 Sequence of pictures showing fluid moving backward in the reverse region (M. Ortega 2009)

 .................................................................................................................................................................... 12 

Figure 1.7 Vortex behind a cylinder ............................................................................................................ 13 

Figure 1.8 Vortices generated behind a cylinder which moves from right to the left (M. Ortega 2009) ... 13 

Figure 1.9 Detail of vortices after a cylinder passed from right to the left (M. Ortega 2009) .................... 13 

Figure 1.10 Vortices in the wake when the cylinder is moving to the left ................................................. 15 

Figure 1.11 Points(i,j)=(50,20) in each of four blocks selected for history graph in Figure 1.12 ................ 15 

Figure 1.12 History graph of the dimensionless horizontal velocities for selected points in Figure 1.1 .... 16 

Figure 2.1 General dimensions ................................................................................................................... 22 

Figure 2.2 Blocks ......................................................................................................................................... 23 

Figure 2.3 Blocks 0, 1, 2 and 3 (80x80 cells each) and local curvilinear reference axis .............................. 23 

Figure 2.4 Point (𝒊 = 𝟏𝟎, 𝒋 = 𝟓𝟓) at each block and grid detail close to the cylinder (from 𝒋 = 𝟓𝟏  to  

𝒋 = 𝟖𝟎  ) ...................................................................................................................................................... 24 

Figure 2.5 Basic geometry for blocks 0, 1, 2 and 3 ..................................................................................... 25 

Figure 2.6 Block 4 (240x80 cells) ................................................................................................................. 27 

Figure 2.7 OpenFoam result for the pressure per unit density field .......................................................... 31 

Figure 2.8 OpenFoam result for the vorticity field ..................................................................................... 32 

Figure 2.9 Selected point in the wake and negative 𝒖𝒙 ............................................................................. 33 

Figure 2.10 𝒖𝒙 as a function of time for periodic behavior (𝒖∞ = 𝟎.𝟎𝟏 𝒎/𝒔) ........................................ 33 

Figure 2.11 Primary selection for one cycle from time 𝟐𝟒.𝟐 𝒔 to time  𝟐𝟔.𝟔 𝒔 ........................................ 34 

Figure 2.12 𝒖𝒙 data for one cell in nine cycles and one hundred nine consecutive times ........................ 35 

Figure 2.13 Instantaneous frame showing 𝒖𝒙 for the time 𝟐𝟒.𝟐 𝒔, color legend Figure 2.14. .................. 36 

Figure 2.14 Legend for Figures 2.13, 2.15 – 2.19 ........................................................................................ 37 

Figure 2.15 𝒖𝒙 contour lines for 𝟒𝟓.𝟖 𝒔 in yellow compared over the entire region for 𝟐𝟒.𝟐 𝒔, color 

legend Figure 2.14 ...................................................................................................................................... 37 

Figure 2.16 𝒖𝒙 contour lines for 𝟒𝟔.𝟎 𝒔 in yellow compared over the entire region for 𝟐𝟒.𝟐 𝒔, color 

legend Figure 2.14 ...................................................................................................................................... 38 

Figure 2.17 𝒖𝒙 contour lines for 𝟒𝟔.𝟐 𝒔 in yellow compared over the entire region for 𝟐𝟒.𝟐 𝒔, color 

legend Figure 2.14 ...................................................................................................................................... 38 

Figure 2.18 𝒖𝒙 contour lines for 𝟒𝟑.𝟔 𝒔 in yellow compared over the entire region for 𝟐𝟒.𝟐 𝒔, color 

legend Figure 2.14 ...................................................................................................................................... 38 



vi 
 

Figure 2.19 𝒖𝒙 contour lines for 𝟒𝟖.𝟒 𝒔 in yellow compared over the entire region for 𝟐𝟒.𝟐 𝒔, color 

legend Figure 2.14 ...................................................................................................................................... 39 

Figure 2.20 Magnitude of the Fourier Coefficients vs. frequency .............................................................. 40 

Figure 2.21 Increased resolution for one cycle ........................................................................................... 44 

Figure 3.1 Forces originated by the pressure on the cylinder at a shaded cell .......................................... 57 

Figure 3.2 Individual contributions to the tangential velocity of arbitrary positive 𝒖 and 𝒗. .................... 58 

Figure 3.3 Viscous force and Velocity components for an arbitrary counter clockwise 𝒗𝒆𝒍𝒕𝒈 ................. 59 

Figure 3.4 Two dimensional domains defined (a) Arbitrary subdomain, (b) rectangular subdomain and (c) 

entire domain.............................................................................................................................................. 63 

Figure 3.5 Arbitrary point in a rectangular subdomain inside block 4. ...................................................... 64 

Figure 3.6 Distance 𝒓(𝒊, 𝒋) between points 𝑸 (where the second invariant is defined) and 𝑷 (where the 

pressure is calculated) ................................................................................................................................ 65 

Figure 3.7 Left boundary detail and definitions for 𝑪𝑰𝟏𝑳 .......................................................................... 65 

Figure 3.8 Right boundary detail and definitions for 𝑪𝑰𝟏𝑹 ........................................................................ 66 

Figure 3.9 Top boundary detail and definitions for 𝑪𝑰𝟏𝑻 .......................................................................... 67 

Figure 3.10 Bottom boundary detail and definitions for 𝑪𝑰𝟏𝑩 .................................................................. 68 

Figure 3.11 Left boundary detail and definitions for 𝑪𝑰𝟐𝑳 ........................................................................ 68 

Figure 3.12 Right boundary detail and definitions for 𝑪𝑰𝟐𝑹...................................................................... 69 

Figure 3.13 Top boundary detail and definitions for 𝑪𝑰𝟐𝑻 ........................................................................ 70 

Figure 3.14 Bottom boundary detail and definitions for 𝑪𝑰𝟐𝑩 .................................................................. 71 

Figure 4.1 Drag coefficient of a cylinder for Re=67 .................................................................................... 82 

Figure 4.2 Pressure and viscous forces on the cylinder .............................................................................. 83 

Figure 4.3 Times of maximum forces 𝟎.𝟑𝒔 top left, 𝟎.𝟓𝒔  top right, 𝟏.𝟑𝒔 bottom left and 𝟏.𝟓𝒔 bottom 

right ............................................................................................................................................................. 85 

Figure 4.4 Drag forces on the cylinder along one cycle .............................................................................. 86 

Figure 4.5 Amplification (100 times) of drag forces shown on Figure 4.4 for one complete cycle ............ 86 

Figure 4.6 Drag (top) and lift (bottom) oscillations for Fast Fourier Transform analysis (see Figure 4.7) .. 87 

Figure 4.7 Drag and lift oscillations frequency spectrums .......................................................................... 87 

Figure 4.8 Lift forces on the cylinder along one cycle ................................................................................ 88 

Figure 4.9 Contributions to drag (left) and lift (right) coefficients from arc 0 (in one cycle) ..................... 89 

Figure 4.10 Contributions to drag (left) and lift (right) coefficients from arc 1 (in one cycle) ................... 90 

Figure 4.11 Contributions to drag (left) and lift (right) coefficients from arc 2 (in one cycle) ................... 90 

Figure 4.12 Contributions to drag (left) and lift (right) coefficients from arc 3 (in one cycle) ................... 91 

Figure 4.13 Drag (left) and lift (right) coefficient contributions from arcs 0, 1, 2 and 3 due to pressure (in 

one cycle) .................................................................................................................................................... 91 

Figure 4.14 Pressure drag coefficients in one cycle: Total (left), sum arcs 3 and 1 (center), and, sum arcs 0 

and 2 (right) ................................................................................................................................................ 92 

Figure 4.15 Drag (left) and lift (right) coefficient contributions from arcs 0, 1, 2 and 3 due to viscous flow 

(in one cycle) ............................................................................................................................................... 92 

Figure 4.16 Viscous drag coefficients in one cycle: Total (left), sum arcs 3 and 1 (center), and, sum arcs 0 

and 2 (right) ................................................................................................................................................ 93 

Figure 4.17 Total drag coefficient in one cycle ........................................................................................... 93 



vii 
 

Figure 4.18 Total drag (left) and pressure drag sum from arcs 1 and 3 (right) for 𝒖𝒙 = 𝟎.𝟎𝟏[𝒄𝒎/𝒔] in 

one cycle ..................................................................................................................................................... 94 

Figure 4.19 Pressure predicted at an arbitrary point in a rectangular domain at time 𝟎.𝟒(𝒔) ................. 96 

Figure 4.20 Arbitrary point in the biggest rectangle at block 4, see color legend in Figure 4.19. .............. 97 

Figure 4.21 Pressure at an arbitrary point for the biggest rectangle in block 4. ........................................ 97 

Figure 4.22 Arbitrary point in the entire domain, see color legend in Figure 4.19. ................................... 98 

Figure 4.23 Pressure at an arbitrary point for the entire domain .............................................................. 98 

Figure 4.24  Pressure at a point for non-filtered data (rectangle domain) .............................................. 100 

Figure 4.25 Pressure at a point for filtered data (rectangle domain) ....................................................... 101 

Figure 4.26 Pressure at a point for filtered data (entire domain) ............................................................ 101 

Figure 4.27 Pressure at a point for filtered data (entire domain) - results .............................................. 101 

Figure 4.28 Contribution of red points 𝑸 to the pressure at each cell along the cylinder boundary ...... 103 

Figure 4.29 Effect of points 𝑸 close to the cylinder on pressure at its boundary .................................... 104 

Figure 4.30 Contribution of each point in the domain to the cylinder drag (Min: Yellow, Max: Blue, zero: 

White) ....................................................................................................................................................... 106 

Figure 4.31 Closer view of drag contributions to the cylinder from the second invariant of the veloctity 

gradient field ............................................................................................................................................. 106 

Figure 4.32 Envisioning multiple instantaneous filtered information over the positive drag contributions 

from 𝑸. ...................................................................................................................................................... 107 

Figure 4.33 Evolution in time of positive contributions of 𝑸 to the drag ................................................. 109 

Figure 4.34 Contribution of each point in the domain to the cylinder lift (Min: Yellow, Max: Blue, zero: 

White) ....................................................................................................................................................... 110 

Figure 4.35  Closer view of lift contributions to the cylinder from the second invariant of the veloctity 

gradient field ............................................................................................................................................. 110 

Figure 4.36 Fluid zones from Hunt paper with its original caption (Hunt, Wray, & Moin, 1988) ............. 112 

Figure 4.37 Zones in the flow around a cylinder for a frame of reference moving at the mean velocity 113 

Figure 4.38 Convergence zone C1 at the inlet (moving frame) ................................................................ 113 

Figure 4.39 Counter clockwise eddy E1 (moving frame) .......................................................................... 114 

Figure 4.40 Convergence zone C2 (moving frame) ................................................................................... 114 

Figure 4.41 eddy zone E2 (moving reference) .......................................................................................... 115 

Figure 4.42 Streamlines (moving frame) over pressure (green: Min, blue: Max) .................................... 116 

Figure 4.43 Streamlines (moving frame) over second invariant of velocity gradient (green: Min, blue: 

Max) .......................................................................................................................................................... 116 

Figure 4.44 Streamlines (moving frame) over vorticity (green: Min, blue: Max) ..................................... 117 

Figure 4.45 Streamlines (static frame) ...................................................................................................... 117 

Figure 4.46 Streamlines (static frame) near to the cylinder ..................................................................... 118 

Figure 4.47 Eddies (static frame) and stagnation points at the cylinder .................................................. 119 

Figure 4.48 Streamlines (static frame) over pressure (green: Min, blue: Max) ........................................ 119 

Figure 4.49 Streamlines (static frame) over second invariant of velocity gradient (green: Min, blue: Max)

 .................................................................................................................................................................. 120 

Figure 4.50 Streamlines (static frame) over vorticity (green: Min, blue: Max) ........................................ 120 

Figure 4.51 Legend bar for Figures 4.52, 4.53 and 4.54 ........................................................................... 121 



viii 
 

Figure 4.52 Second invariant of the velocity gradient from OpenFoam, 𝑸 .............................................. 122 

Figure 4.53 𝑸 applying Equation 3.35 with a central difference approach in block 4.............................. 123 

Figure 4.54 𝑸 applying Equation 3.36 with a central difference approach in block 4.............................. 123 

Figure 4.55 𝑸 applying Equation 3.36 with a forward difference approach in block 4 ............................ 123 

Figure 4.56 𝑸 applying Equation 3.37 with a central difference approach in block 4.............................. 123 

Figure 4.57 Instantaneous pressure distribution along the cylinder boundary envisioned by VerFlow-V.01

 .................................................................................................................................................................. 124 

Figure 4.58 Instantaneous pressure distribution as a function of the angle from the horizontal. .......... 124 

Figure 4.59 Pressure distribution for small Reynolds numbers (Churchill, 1988) .................................... 125 

Figure 4.60 Comparison of instantaneous and mean pressure with experimental data (Churchill, 1988)

 .................................................................................................................................................................. 125 

Figure 4.61 Predicted and simulated pressure along the cylinder boundary for 𝒕 = 𝟎.𝟑𝟓[𝒔] ................ 126 

Figure 4.62 Integral components for the pressure along the cylinder boundary for 𝒕 = 𝟎.𝟑𝟓[𝒔] .......... 127 

Figure 4.63 Components of (CI1) from each boundary for 𝒕 = 𝟎.𝟑𝟓[𝒔] ................................................. 128 

Figure 4.64 Components of (CI2) from each boundary for 𝒕 = 𝟎.𝟑𝟓[𝒔] ................................................. 128 

Figure C.1 VerFlow-V.01 window zones……………………………………………………………………………………….. …….172 

Figure C.2 VerFlow-V.01 color legend bar……………………………………………………………………………………. …….174 

Figure C.3 Initial tab in Zone 2……………………………………………………………………………………………………… …….175 

Figure C.4 Streamwise velocity field (default) displayed in zone 4 after reading………………………….. …….176 

Figure C.5 Exit alert…………………………………………………………………………………………………………………….. …….177 

Figure C.6 Selection of variables…………………………………………………………………………………………………. …….177 

Figure C.7 Adjust tab in zone 2……………………………………………………………………………………………………. …….179 

Figure C.8 Envisioning negative pressure and positive Q example……………………………………………….. …….179 

Figure C.9 Dimensional values for an instantaneous mouse pointer location in zone 4………………… …….180 

Figure C.10 Dimensionless values for an instantaneous mouse pointer location in zone 4…………... …….181 

Figure C.11 Labels in the Setting tab in zone 4……………………………………………………………………………... …….182 

Figure C.12 Settings tab example. Note the effect of checking the box for stagnation points in the View 

label………………………………………………………………………………………………………………………………………….…. …….183 

Figure C.13 Representation of pressure and viscous forces over Q…………………………………………….… …….184 

Figure C.14 Representation of pressure distribution from OpenFoam numerical “data”………….………….186 

Figure C.15 Representation of pressure distribution originated from an arbitrary cell (enlighten in red) 

………………………………………………………………………………………………………………………………………………….…. …….187 

Figure C.16 Integration options for a rectangular subdomain ……………………………………………………… …….188 

Figure C.17 Integration points for the entire domain …………………………………………………………….……. .…...190 

Figure C.18 Q drag-lift & more tab options ………………………………………………………………………….………. …….191 

Figure C.19 Representation of Q drag after calculations realized on Q drag-lift & more tab ………… …....191 

Figure D.1 Region definitions…………………. ………………………………………………………………………….………. …….194 

Figure D.2 Circular zone outside the region……………………………………………………………………… ………… …....194 

 

  



ix 
 

List of Tables 

Table 2.1 Velocity and diameter required for water and Re=70 ................................................................ 21 

Table 2.2 Velocities and diameter selected for simulation ........................................................................ 21 

Table 2.3 Conversion to a unique coordinate system ................................................................................ 26 

Table 2.4 Reference values for the maximum time interval allowed for flow in constricted region ......... 28 

Table 2.5 Relevant information in the controlDict dictionary .................................................................... 29 

Table 2.6 Period and main frequencies obtained from three different methods ...................................... 41 

Table 2.7 Original nine cycles data ............................................................................................................. 42 

Table 2.8 Rotated data to reach a new order ............................................................................................. 43 

Table 2.9 New names for the 109 time points in one cycle. ....................................................................... 43 

Table 4.1 Drag contributions from integrals in Equation 3.84 .................................................................. 127 

 Table C.1 Variables……………………………………………………………………………………………………………….…….. …….178 

 

  



x 
 

List of Animations 

Animation 1.1 Fluid moving backward in the reverse flow region (M. Ortega 2009)……………………. …..12 

Animation 4.1 Forces on the cylinder…………………………………………………………………………………………. ……84 

Animation 4.2 Pressure at a point on a rectangular domain…………………………..…………..…….……….. ……96 

Animation 4.3 Pressure at a point on the entire domain…………………………………………………………….. ……98 

Animation 4.4 Contributions of Q to the drag……………………………………….……………………………………. ….108 

Animation 4.5 Contributions of Q to the lift……………………………………………………………………………….. ….110 

Animation 4.6 Stagnation points on the cylinder, vorticity field background………………………………. ….119 

 



xi 
 

Grant Information 

Several Institutions graciously opened their doors to my family and myself that changed our lives 

during the time I pursued this Master’s Degree. 

I acknowledge the Fulbright Commission – Ecuador for honoring me with a Fulbright Faculty 

Development Program Grant. The Fulbright scholarship is administered by LASPAU, which has 

been my sponsor. I am very grateful to the two Universities where I have studied while in the 

United States, the University at Buffalo in the English Training Program and Virginia Tech in 

the Graduate Program. 

I especially recognize not only the financial but also the morale support I received from the 

Fulbright scholarship, the National Polytechnic School – Ecuador, the Graduate School, and the 

Engineering Science and Mechanics Department at Virginia Tech during these two years. 

Thanks to all the people who participated in my behalf at these Institutions. 

  



xii 
 

Dedication 

To Sofía and Pablo, for they are the daily energy in my life. 

To Magy, for she is the lovely heart and soul of my dear family. 

To my father Miguel and my mother Tere, for they gave me all the love and all what they are. 

To Ms. Delita, Carli, María Margarita, Carlos Esteban, María Jose, Pol, Togue, Carito, Richi, 

Dany, Beto, Lore, Gaby, Xime, Maye, Fer and Hólger, for they have been always filling our 

hearts with love, peace and hope. 

  



xiii 
 

Acknowledgements 

A sincere appreciation to everyone who helped in different ways. 

Professor Ronald Kriz, my advisor, teacher and friend. From him I enjoyed three excellent 

courses. He gave me the opportunity and directed me through the whole process at Virginia Tech 

including serving as co-chair on this thesis. 

Professor Clinton Dancey, who, is a co-chair on this thesis, and who provided continuity and 

guidance throughout. Many discussions of the results and derivations of 𝑄 which was included in 

the creation of the VerFlow-V.01 computer program.  

Professor Saad Ragab, an excellent professional who taught two courses and was a committee 

member in my thesis, who contributed to the verification of simulation results. 

Together my committee, after countless meetings and discussions, contributed to the evolution of 

ideas used to create and customize VerFlow-V.01. 

Patrick Shinpaugh who set up OpenFoam and ParaView on computers used in this thesis. 

Brandon Dillon, who openly shared very important details and spent his time when I began using 

OpenFoam. 

Ms. Susan Olivier, who kindly helped me with grammatical corrections. 

Irene Furman, her family and Adrian Tola, who are our friends and our dear family at 

Blacksburg, 

Our friends at LAIGSA, Virginia Tech, at the Holy Spirit Catholic church in the Spanish Masses 

and at our children’s Harding Avenue Elementary School. 

Our Ecuador, its people, the land, far from here, but always present. 

Thanks to God. For you let us live, share and learn from this experience in the United States, 

which kindly opened its doors to my family and I. 

 

  



1 
 

Introduction 

Understanding the complexities of laminar and turbulent flow is a difficult problem that has been 

studied for many years. Researchers in this field have been creative and innovative by 

introducing several new techniques and definitions. One of those is the definition of the second 

invariant of the velocity gradient, which is particularly relevant to vortical flows. In this study, 

the well known problem of periodic laminar flow around a cylinder is reproduced using the 

OpenFoam computational fluid dynamic program. Simulation results are studied using VerFlow-

V.01, a customized graphical post-processing tool, which reveals details of periodic behavior not 

previously understood in a qualitative sense. 

The first chapter is a classical literature review. Papers and books are reviewed that have 

information related to either the second invariant of the velocity gradient, or the flow around a 

cylinder with periodic behavior. This information is presented chronologically. 

The second chapter defines the problem and shows how to generate simulation data using 

OpenFoam (a fluid dynamics open source simulation computer program). This chapter also 

shows how to identify the principal frequencies associated with periodic flow and improve the 

time resolution for one period by combining frames from several cycles into one continuous 

cycle. 

The third chapter is a mathematical description of equations used in the numerical simulation and 

VerFlow-V.01 computer programs. Some equations are generally used by the fluid dynamic 

simulation program and others are focused on specific situations, such as the two dimensional 

problem or the finite difference forms that were used to calculate pressures and other properties 

associated with velocity gradients in subdomains associated with convergent, eddy and stream 

zones. 

The fourth chapter is a compilation and discussion of results obtained by using VerFlow-V.01, a 

graphical post-processing computer program developed in Visual Basic 2008. These results 

include forces on the cylinder due to pressure and viscous interactions. In this chapter a unique 

approach for calculating the pressure is developed at any arbitrary point, which is the sum of 

several factors evaluated by performing numerical integrations in a domain with a known 
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velocity field, pressure, and pressure gradients along the boundaries. Similarly an additional 

feature in VerFlow-V.01 was developed to map the effect on the cylinder boundary as lift and 

drag contributions from the second invariant at a point anywhere in the domain. 

The fifth chapter concludes with a discussion of this approach and suggestions for future work. 

Unique to this thesis are linked animations that provided an improved dynamic interpretation. 

The first appendix contains some guidelines for modification and reproduction of OpenFoam 

files that facilitates reproduction of results shown here. The second appendix includes the main 

subroutines developed in VerFlow-V.01, which is copyrighted by the author. The third appendix 

provides a complete reference of VerFlow-V.01 as a User’s Manual. The fourth appendix shows 

the derivation of the solution of the Poison equation for the 2D problem. 

  



3 
 

Chapter 1 .  Literature Review 

This chapter describes the general familiar expressions for viscous incompressible flows, such as 

the Navier-Stokes equations and the continuity equation. Following these basic expressions, a 

chronological review focuses on how the second invariant 𝑄 of the velocity gradient first 

appeared and how it became both a variable for a local balance in the Poisson’s equation and 

also a way to identify vortices in periodic fluid flow. Next the review introduces the two-

dimensional (2D) expression to calculate the pressure at a point when 𝑄 is known in the domain. 

This expression is further developed in Chapter 3. Finally a review of empirical parameters, e.g. 

Reynolds and Strouhal number, and experimental observations of periodic flow contribute to 

interpreting results predicted by analytic and numerical models. 

1.1.  Governing Equations for Incompressible Viscous Flows  

The Navier-Stokes equations for a viscous incompressible flow in a 3D space can be written in 

indicial form as follows (Frederick & Chang, 1972): 

 
𝐷

𝐷𝑡
 𝑢𝑖 = 𝑓𝑖 −

𝜕𝑃

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

 
(1.1) 

Where three equations come from the free indices  𝑖 = 1, 2 and 3, 𝑥𝑖   and 𝑢𝑖   are the spatial and 

velocity components respectively, 𝑓𝑖  are the acceleration components or body force components 

due to external fields (e.g. gravitational), the summation convention is used, 𝑃 is the pressure 𝑝 

divided by the density 𝜌 , and, the kinematic viscosity 𝜈 is the ratio between the dynamic 

viscosity 𝜇 and the density 𝜌 as follows: 

 𝑃 =
𝑝

𝜌
 

(1.2) 

 𝜈 =
𝜇

𝜌
 

(1.3) 

Applying the comoving derivative to the left hand side of equation (1.1), 
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𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝑓𝑖 −
𝜕𝑃

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

 
(1.4) 

 

The continuity equation for an incompressible flow is given by:  

 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (1.5) 

1.2.  The second invariant of the velocity gradient 

The following sentence was written almost fifty years ago and is still applicable: “With the 

advent of the high-speed computer, it has become possible to develop methods for studying 

theoretically many of the non-steady incompressible fluid flow problems which previously had 

been hopelessly complicated for analysis” (Fromm, 1963). Fromm was a pioneer in 

computational fluid dynamics, who presented a complete and detailed technical report in which 

he developed a finite difference approach for the solution of the previous equations. Surely the 

complex nature of incompressible flows challenges our understanding and the continuous 

technological development of computers aids in meeting this challenge. However, fluid dynamic 

researchers can be overwhelmed by multiple 3D properties embedded in massive datasets 

generated by these simulations. The complexity of the governing differential equations and the 

massive simulation data sets contributes little to our intuitive understanding of complex flow 

structures e.g. vortices, eddies, etc. that are observed experimentally. 

Embedded in this vast sea of quantitative simulation data is a qualitative understanding. Richard 

Feynman commented on the qualitative forms and features of equations associated with laminar 

periodic flow; “When we have similar equations in a less familiar situation, and one for which 

we cannot yet experiment, we try to solve the equations in a primitive, halting, and confused way 

to try to determine what new qualitative features may come out, or what new qualitative forms 

are a consequence of the equations” (Feynman, Leighton, & Sands, 1964). This idea of 

qualitative forms is used in this thesis when describing both mathematical and graphical models. 
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In this thesis the second invariant, 𝑄, of the velocity gradient tensor, 
𝜕𝑢𝑖

𝜕𝑥𝑗
, is used for two reasons. 

First, because the second invariant of the velocity gradient, calculated by OpenFoam, was 

ambiguous where a literature review confirmed equation 1.15 was indeed used by OpenFoam. 

The literature review that follows revealed other equivalent mathematical forms of 𝑄 which are 

further developed in Chapter 3 and used by VerFlow-V.01 to calculate 𝑄 from the velocity field 

(see equations 3.35, 3.36, 3.37, 3.49, 3.52 and 3.54). Second, 𝑄 is defined as shown in equations 

1.15, to predict the pressure at a point according to equation 3.84, which is used to predict lift 

and drag contributions discussed in section 4.2. 

During the sixties, Fromm and other authors were developing finite difference numerical 

methods to solve incompressible flow problems. By using the Navier Stokes and the continuity 

equations as the basic equations, and pressure as an auxiliary variable for 2D problems, Fromm 

introduced another variable, 𝑄𝐹. This variable was used to calculate the pressure at each point for 

a fixed time through a Poisson equation. 

 

Figure 1.1 Representation of terms in Equation 1.8 

The variable 𝑄𝐹 introduced by Fromm was defined for a 2D problem as: 

 𝑄𝐹 ≡
𝜕2𝑢2

𝜕𝑥2
+ 2

𝜕2𝑢𝑣

𝜕𝑥𝜕𝑦
+
𝜕2𝑣2

𝜕𝑦2
 (1.6) 

Fromm also shows the relationship of 𝑄𝐹 with the pressure as follows: 
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𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
= −𝜌𝑄𝐹  (1.7) 

Finite difference forms of these equations are written as equations 1.8 and 1.9 below. Figures 1.1 

and 1.2 represent each term in these equations. Pressure at cell 𝑖, 𝑗 is calculated by averaging the 

neighboring pressures and adding the contribution from the velocity field in its vicinity, given by 

𝑄𝐹𝑖 ,𝑗 .  

  
𝑃

𝜌
 
𝑖 ,𝑗

=
1

4
  
𝑃

𝜌
 
𝑖+1,𝑗

+  
𝑃

𝜌
 
𝑖−1,𝑗

+  
𝑃

𝜌
 
𝑖 ,𝑗+1

+  
𝑃

𝜌
 
𝑖 ,𝑗−1

+ 𝑎2𝑄𝐹𝑖 ,𝑗   (1.8) 

 

𝑎2𝑄𝐹𝑖 ,𝑗 =  𝑢𝑖+1,𝑗
2 + 𝑢𝑖−1,𝑗

2 − 2𝑢𝑖 ,𝑗
2 + 𝑣𝑖 ,𝑗+1

2 + 𝑣𝑖 ,𝑗−1
2 − 2𝑣𝑖 ,𝑗

2   

                   +2   𝑢𝑣 
𝑖+

1
2

,𝑗+
1
2
−  𝑢𝑣 

𝑖−
1
2

,𝑗+
1
2

+  𝑢𝑣 
𝑖−

1
2

,𝑗−
1
2
−  𝑢𝑣 

𝑖+
1
2

,𝑗−
1
2
  

(1.9) 

 

Figure 1.2 Representation of terms in Equation 1.9. Velocities in white circles are calculated from the nearest in gray circles. 
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The velocities at each point were obtained by averaging the nearest available velocities. 

Besides its relationship to pressure, interestingly, 𝑄𝐹 has also been associated with flow 

structures in the flow or “eddies” (Sections 3.2.1 and 3.2.2 show how eddies are associated with 

zones of minimum pressure and minimum 𝑄𝐹), which are defined as regions in which the 

irrotational straining 𝐸𝑖 ,𝑗  is small when compared with the vorticity, and at the same time the 

pressure tends to a minimum value (Hunt, Wray, & Moin, 1988). This condition is realized when 

the second invariant 𝐼𝐼 of the deformation tensor 
𝜕𝑢𝑖

𝜕𝑥𝑗
 is less than a specific reference value. Using 

the indicial notation and in a three-dimensional (3D) space, the authors, Hunt et al, defined 𝐼𝐼 for 

an incompressible flow as: 

 𝐼𝐼 =
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
= 𝐸𝑖 ,𝑗𝐸𝑖 ,𝑗 −

1

2
𝜔𝑖𝜔𝑖 (1.10) 

 𝐸𝑖 ,𝑗 =
1

2
 
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
  

(1.11) 

 𝜔𝑖 = 𝜖𝑖𝑗𝑘
𝜕𝑢𝑘
𝜕𝑥𝑗

 
(1.12) 

Where 𝐸𝑖 ,𝑗  in equation 1.11 is called either rate of strain tensor or the symmetric part of the 

velocity gradient tensor 
𝜕𝑢𝑖

𝜕𝑥𝑗
. 

Hunt and the other authors also recognized and defined the existence of convergence and stream 

regions in general flow domains. These concepts will be used later in the qualitative 

investigation of the laminar flow around a circular cylinder. 

The characteristic equation of the velocity gradient tensor, 
𝜕𝑢𝑖

𝜕𝑥𝑗
, from a general form (Mase, 

1970), is given by equation 1.13, where 𝑃, 𝑄 and 𝑅 are, respectively, the first, second and third 

invariants of the velocity gradient  tensor,  
𝜕𝑢𝑖

𝜕𝑥𝑗
. 

 𝜍3 − 𝑃𝜍2 + 𝑄𝜍 − 𝑅 = 0 (1.13) 
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𝑃 is zero for incompressible flow, 𝑄 simplifies (again for incompressible), and 𝑅 is the 

determinant of the velocity gradient: 

 𝑃 =
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (1.14) 

 𝑄 =
1

2
 
𝜕𝑢𝑖
𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝑥𝑗
−
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

 = −
1

2
 
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 

(1.15) 

 𝑅 = Det 
𝜕𝑢𝑖
𝜕𝑥𝑗

  
(1.16) 

Equation 1.13 considering 𝑃 = 0 reduces to: 

 𝜍3 + 𝑄𝜍 − 𝑅 = 0 (1.17) 

In 1990, Jeong proposed using the complex eigenvalues 𝜍 of the velocity gradient tensor 
𝜕𝑢𝑖

𝜕𝑥𝑗
 to 

define a vortex core (Jeong & Hussain, 1994). According to Jeong, the eigenvalues 𝜍 of equation 

1.17 are complex when the discriminant, Δ, is positive. 

 Δ =  
1

3
𝑄 

3

+  
1

2
𝑅 

2

> 0 (1.18) 

Note that 𝑄 in Equation 1.18 has to be positive in regions where a vortex core exists. 

Comparing Equations 1.6 and 3.37, which is based on the definition given in equation 1.15 and a 

mathematical derivation in Chapter 3, gives the relation between 𝑄𝐹 and 𝑄 as: 

 𝑄𝐹 = −2𝑄 (1.19) 

Similarly, comparison of the definitions for the second invariant of the velocity gradient tensor 

given in equations 1.10 and 1.15 gives: 

 𝐼𝐼 = −2𝑄 = 𝑄𝐹 
(1.20) 
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The definition given in equation 1.15 is used in this thesis for the second invariant of the velocity 

gradient tensor. Note that the variable used by Fromm,𝑄𝐹, and that used by Hunt, 𝐼𝐼, is just 𝑄 

but different by a constant. 

In 1994, an interesting description of the second invariant of the velocity gradient tensor was 

stated: “𝑄  represents the local balance between shear strain rate and vorticity magnitude” (Jeong 

& Hussain, 1994), which makes sense when we look at the Poisson equation described in 

equation 1.7 and some of the different ways this variable can be written for incompressible flow. 

 𝑄 ≡
1

2
  
𝑑𝑢𝑖
𝑑𝑥𝑖

 
2

−
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 = −

1

2
 
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 =

1

2
  Ω 2 −  𝑆 2  (1.21) 

 𝑆𝑖𝑗 =
1

2
 
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
  

(1.22) 

 Ω𝑖𝑗 =
1

2
 
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
  

(1.23) 

where 𝑆 is the symmetric part and Ω is the antisymmetric part of the velocity gradient tensor. 

They also proposed the second largest eigenvalue 𝜆2 of the symmetric tensor 𝑆2 + Ω
2
 to identify 

the vortex core. 

1.3.  Flow around a cylinder 

It is known that the flow around a cylinder is characterized by its Reynolds number, given by the 

Equation 1.24. Figure 1.3 shows a confined channel in which fluid passes around a cylinder. 

 

Figure 1.3 General flow around a cylinder 
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 Re =
𝜌𝑢∞𝐷

𝜇
=
𝑢∞𝐷

𝜈
 

(1.24) 

Here 𝑢∞  is the velocity of the fluid at the inlet (left side in Figure 1.3), 𝐷 is the characteristic 

length (in this case the diameter of the cylinder), 𝜌 is the density, 𝜇 is the dynamic viscosity and 

𝜈 is the kinematic viscosity. 

The drag coefficient C𝐷  is a number obtained from the expression (Feynman, Leighton, & Sands, 

1964): 

 C𝐷 =
𝐹

1
2𝜌𝑢∞

2𝐷𝑧
 

(1.25) 

This is a dimensionless coefficient that characterizes the drag force acting on a submerged body 

where 𝑧 is the length of the cylinder. The authors show a graph as a function of the Reynolds 

number. In Figure 1.4, [adapted from (Feynman, Leighton, & Sands, 1964)] we have extracted 

from this graph a region that includes the specific Reynolds numbers associated with the 

simulation in this study. 

 

Figure 1.4 Drag coefficient and Steady (S), Periodic Laminar (PL) and Periodic Turbulent (PT) regions for cylinders. 
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Figure 1.4 also shows three regions for the flow. For relative small Reynolds numbers a steady 

flow (S) is observed. When the Reynolds number is increased, the regime changes to a periodic 

laminar (PL) flow. For relatively high Reynolds numbers the flow becomes periodic turbulent 

(PT).  The transition from laminar to periodic laminar flow is highlighted as a dashed vertical 

line on the left in Figure 1.4. 

The coefficient of drag in Figure 1.4 is shown as a function of Reynolds, C𝐷(Re), which differs 

from one author to another [compare (Feynman, Leighton, & Sands, 1964), (Warsi, 1993), 

(Kundu & Cohen, 2004), (Churchill, 1988)]. Different flow regimes are classified using 

Reynolds numbers (Kundu & Cohen, 2004). 

 

Figure 1.5 Regimen flows 

For discussion here, Figure 10.17 from Kundu et al  (Kundu & Cohen, 2004) is adapted in Figure 

1.5. Four different flow regimes are represented in Figure 1.5: (1) for Re<4 and 4<Re<40 which 
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corresponds to the steady laminar flow in Figure 1.4, (2) for 80<Re<200 which corresponds to 

periodic laminar and also to periodic turbulent flow in Figure 1.4, and for turbulent flow there 

are two additional turbulent regimes of flow, (3) for Re<3 × 105 and (4) for Re>3 × 105. Pier 

establishes the Reynolds number transition from laminar to periodic at a critical value 

49<Re<49.5 (Pier, 2002). 

A reverse flow appears in a region where the fluid flows backward behind the cylinder. In this 

2D case, the flow has a negative horizontal (streamwise) velocity, which always occurs for 

Reynolds numbers below 200. 

Figure 1.6 and Animation 1.1 show fluid moving backward behind a cylinder in a reverse region 

as a sequence of pictures. Flow goes from left to right and the cylinder is located at the left. In 

this case the Reynolds number is approximately 1000 but the flow is considerably affected by the 

no-slip condition not only on the cylinder, top and bottom walls, but also on the base wall 

perpendicular to the cylinder. The visualization was created with colored ink dropped upstream. 

Some ink fell down to the base of the channel where it remained static behind the cylinder. 

 

Figure 1.6 Sequence of pictures showing fluid moving backward in the reverse region (M. Ortega 2009) 

 

Animation 1.1 Fluid moving backward in the reverse flow region (M. Ortega 2009) 

The reverse region is also displayed as a green region in Figure 2.9. 

Figure 1.7 shows vortices behind a cylinder for periodic laminar flow. The representation is 

based on observations and photographs, see Van Dyke´s book for reference (Van Dyke, 1982). 

Clear clockwise vortices are located from the horizontal mid line to the top and the 

counterclockwise vortices are located from the mid line to the bottom. 

A1.1_reverse_FS.wmv
A1.1_reverse_FS.wmv
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Figure 1.7 Vortex behind a cylinder 

 

Figure 1.8 Vortices generated behind a cylinder which moves from right to the left (M. Ortega 2009) 

 

Figure 1.9 Detail of vortices after a cylinder passed from right to the left (M. Ortega 2009) 

Flow moving around a fixed cylinder and a cylinder moving through initially static fluid in the 

opposite direction are similar problems. Figure 1.8 shows an instantaneous picture of the fluid 

behind a cylinder moving from right to the left. The fluid in this case is a mixture of water and 
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soap, original idea of Sofía Ortega (who is 10) to capture flow phenomena. An approximate 

makeup of the mixture is water 90% and soap 10%. The diameter of the cylinder is 5 mm (a 

small part of the cylinder is still in the picture) and the velocity is approximately 60 mm/s. The 

water viscosity is altered by viscosity of the soap. Viscosity is not measured. Result shown here 

are not quantitative and used here only for illustrative purposes. 

Both Figures, 1.8 and 1.9, demonstrates how vortices form, which are clockwise at the top of the 

picture and counter clockwise at the bottom. This is valid when fluid moves from left to right 

around a cylinder or when the cylinder moves from right to left through the fluid. In either case, 

results are the same independent of the frame of reference, e.g. movement of the cylinder with 

respect to the fluid vs. movement of the fluid with respect to the cylinder. 

1.4.  Frequency analysis 

OpenFoam numerical results are referred to here as “data”. The objective of the frequency 

analysis in this section is to validate the “data” generated by the OpenFoam numerical simulation 

results. 

The flow around a cylinder for the Reynolds numbers of interest in this study, exhibits periodic 

behavior. Periodic behavior is analyzed here in two ways: first using the dimensionless shedding 

frequency Strouhal number, and second using the Fast Fourier Transform (FFT) for a particular 

fixed point in the flow. 

The “shedding frequency” 𝑓𝑆 can be calculated using the dimensionless Strouhal number 

according to the following definition (Norberg, 1994): 

 𝑆𝑡 ≡
𝑓𝑆𝐷

𝑢∞
 

(1.26) 

The original formula was based on observations and published by Strouhal in 1878. Von Kármán 

studied the movement of the fluid behind the cylinder and its geometrical pattern in 1911. This 

pattern is still recognized as the Von Kármán’s street (Den Hartog, 1953) and it can be seen in  

Figure 1.10. 
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Figure 1.10 Vortices in the wake when the cylinder is moving to the left 

The fast Fourier Transform is used to calculate the principal frequencies in time based data. A 

different frequency spectrum is obtained for each fixed point (see for example Figures 1.11 and 

1.12). The first frequency after zero should match with the shedding frequency and the Strouhal 

number can be calculated applying equation 1.26. The shedding frequency is calculated in 

Section 2.7.1 and the frequency spectrum is calculated in Section 2.7.2. 

 

Figure 1.11 Points(i,j)=(50,20) in each of four blocks selected for history graph in Figure 1.12 
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The frequency spectrum is presented in amplitude (logarithmic scale) versus frequency graphs. A 

different graph can be drawn for different regions since the results for small subdomains in the 

numerical simulation are also different.  

An example of how graphs vary from one point to another is shown in Figures 1.11 and 1.12 

where the horizontal velocity is mapped in time at four points, each in a different block around 

the cylinder and using (i,j) = (50,20) for each block (see also Figures 2.2 and 2.3). Important 

contributions of the higher harmonics can be seen for locations behind the cylinder, where the 

periodic behavior is much more complicated than in other regions. 

 

Figure 1.12 History graph of the dimensionless horizontal velocities for selected points in Figure 1.1 

There are specific tools developed to do the analysis using the Fast Fourier Transforms (FFT). A 

FFT is used in this study to find the main frequencies that characterize the flow. A tool available 

in Excel (see section 3.7.2) was used here. 

1.5.  Chapter nomenclature 

𝜕  partial derivative 

Δ  discriminant 

𝜖𝑖𝑗𝑘   permutation symbol  

𝜆2  second largest eigenvalue of  𝑆2 + Ω
2
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𝜇  dynamic viscosity 

𝜈  kinematic viscosity  

𝜌  density  

𝜔𝑖   vorticity  

Ω  antisymmetric part of the velocity gradient tensor, 
𝑑𝑢𝑖

𝑑𝑥𝑗
 

𝜍  eigenvalues of the characteristic equation of the velocity gradient tensor, 
𝑑𝑢𝑖

𝑑𝑥𝑗
 

𝑎  side of the finite difference square cells  

C𝐷   drag coefficient  

𝐷  total derivative 

𝐸𝑖 ,𝑗   symmetric part of the velocity gradient tensor, 
𝑑𝑢𝑖

𝑑𝑥𝑗
 

𝐹  drag force 

𝑓𝑖   body force 𝑖 = 1,2,3 

𝑖  cell in the 𝑥 direction or its left wall  

𝑖  index 1, 2 or 3 

𝐼𝐼  second invariant of the velocity gradient tensor, 
𝑑𝑢𝑖

𝑑𝑥𝑗
 

𝑗  cell in the 𝑦 direction or its bottom wall  

𝑗  index 1, 2 or 3  

N𝑘   kinematic vorticity number  

𝑃  pressure  

𝑃  first invariant of the velocity gradient 𝑃 = 0 (incompressible) 
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𝑄  second invariant of the velocity gradient, 
𝑑𝑢𝑖

𝑑𝑥𝑗
 

𝑄𝐹  auxiliary variable used by Fromm  

𝑅  third invariant of the velocity gradient, 𝑅 = 𝐷𝑒𝑡  
𝑑𝑢𝑖

𝑑𝑥𝑗
  

Re  Reynolds number 

𝑆  symmetric part of the velocity gradient tensor, 
𝑑𝑢𝑖

𝑑𝑥𝑗
 

𝑢  velocity in the 𝑥 direction at a point 

𝑢𝑖   velocities 𝑖 = 1,2,3 

𝑣  velocity in the 𝑦 direction at a point 

𝑥  axis 1 

𝑥𝑖   axes 𝑖 = 1,2,3 

𝑦  axis 2 

𝑧  thickness 
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Chapter 2 .  Numerical Simulation: OpenFoam 

The study of the flow around a cylinder begins with the generation of simulation “data”. This is 

accomplished by defining the problem and then using OpenFoam to do the simulation using 

details such as a well defined grid, the initial velocity and pressure fields, slip and no slip at walls 

and fluid properties. 

This chapter includes a preliminary evaluation of the simulation results to validate the “data”. 

Initially ParaView is used and after that a customized computer program VerFlow-V.01 was 

developed to analyze and interpret OpenFoam simulation results in section 2.6. 

2.1.  The problem 

In order to solve the flow around a cylinder some assumptions are necessary, since mathematical 

expressions become simpler and the solutions are still close to real cases. 

A 2D flow is considered in this thesis because it simplifies the problem, both mathematically and 

computationally. Although simulating 3D flow would be ideal, 3D Openfoam simulations would 

require multi-processor supercomputers. In this thesis 2D OpenFoam simulations were 

accomplished using high speed single processor desktop computers and simulation “data” was 

envisioned (visually analyzed) using laptop computers. Consequently the simulation results 

shown here are more likely to be reproduced by a larger community of researchers. 

The temperature is assumed to be constant, which is appropriate since there are no thermal 

sources or sinks. The consequences of this assumption are that thermal dilatation or contraction 

can be neglected and the viscosity (kinematic and dynamic) can be considered as constants. 

While gases are highly compressible, liquids behave drastically differently. Although density can 

change, when pressure and/or temperature changes, this change is very small and can be ignored. 

We expect the values of the pressure field to be comparable with the mean pressure in the whole 

region, so the changes in pressure are also very small and since the compressibility factor for 

liquids is very close to zero, density can be considered as constant. Although the variation in 
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pressure is small, it cannot be neglected. Pressure variations are balanced mechanically with the 

velocity field instantaneously. 

The viscous stress equation for Newtonian fluids is a linear equation, which does well to 

represent the behavior of many fluids including water. We choose a laminar flow not steady, but 

periodic, that requires a range of Reynolds numbers defined in Figure 1.4. Since an infinite 

domain is not possible, the domain is confined with walls.  

A summary of the main assumptions: 

i. Flow is 2D and  laminar  

ii. The fluid is water which is considered incompressible and Newtonian 

iii. Flow is  not temperature dependent  

iv. The velocity and dimensions yield a Reynolds number such that the flow is in the  

periodic laminar region (see figure 1.4) 

v. The slip condition is given for the side walls and the no-slip condition applies for the 

cylinder surface 

vi. Flow is not affected by the gravity field 

Although some of the values in equation 1.24 depend on temperature, they can be considered 

constants when the variation in temperature is small. For water at ambient temperatures 

acceptable approximate values are: 

 

𝜌 = 1000  
𝑘𝑔

𝑚3
  

𝜇 = 0.00089  
𝑘𝑔

𝑚 𝑠
  

𝜈 = 8.9x10−7  
𝑚2

𝑠
  

(2.1) 

According to figure 1.4, the periodic laminar region exists approximately for Reynolds numbers 

from 21 to 120. Selecting Re=70 is a reasonable approximation for periodic laminar flow. When 

using equation 1.24 and properties given in equation 2.1, the following property relationship can 

be approximated as follows: 
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𝑢∞𝐷 ≈ 𝜈 Re 

𝑢∞𝐷 ≈ 8.9x10−7  
𝑚2

𝑠
 70 

𝑢∞𝐷 ≈ 6.23x10−5  
𝑚2

𝑠
  

(2.2) 

The data in Table 2.1 shows possible values for the velocity and the diameter using a Reynolds 

number of 70. 

𝜈 Re 𝑢∞ 𝑚/𝑠  𝐷 𝑚  

6.23E-05 1 0.0000623 

6.23E-05 0.1 0.000623 

6.23E-05 0.01 0.00623 

6.23E-05 0.001 0.0623 

6.23E-05 0.0001 0.623 

Table 2.1 Velocity and diameter required for water and Re=70 

The combination gives either a very low velocity (fourth and fifth cases) or a very small diameter 

(first and second cases). Note, that for the third choice, the velocity and the diameter maintain a 

reasonable relationship that could be easily examined experimentally. Three velocities and their 

corresponding diameters are shown in Table 2.2. The table also shows the Reynolds number for 

each case. 

𝑢∞ 𝑚/𝑠  𝐷 𝑚  𝜈 Re Re 

0.01 0.005 5.00E-05 56.2 

0.012 0.005 6.00E-05 67.4 

0.014 0.005 7.00E-05 78.7 

Table 2.2 Velocities and diameter selected for simulation 

The dimensions of the channel are functions of the selected diameter in Figure 2.1. There is a 

special interest in the region behind the cylinder, so the dimensions are shown to scale. 
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Figure 2.1 General dimensions  

2.2.  Boundary conditions 

A uniform velocity is given at the inlet (left side) and the velocity field can change in the interior 

of the domain as the flow field develops in time. 

The pressure at the outlet (right side) is set to zero as the boundary condition assuming that the 

fluid is going out to the atmospheric pressure (zero relative). Here the pressure is calculated per 

unit density. When the fluid is incompressible the density must be constant. Gravity is neglected. 

The fluid is idealized to pass along the top and bottom walls; however, the mechanical friction is 

eliminated between the fluid and these walls by allowing the slip condition. So the top and 

bottom walls are not “realistic” in the sense that they only act as a frictionless channel for the 

flow.  

The effect of the friction between the cylinder and the flow is established by assuming the no-

slip condition. 

2.3.  The grid 

To generate the grid, the domain is divided into five blocks as indicated in figure 2.2. 



23 
 

 

Figure 2.2 Blocks  

This grid has some advantages in comparison to other choices. Although this is a simple grid, it 

has a very good resolution near the cylinder. For our purposes, the simplicity of the grid is an 

advantage, but the most relevant advantage of this grid is precisely its good resolution to solve 

features down to 0.01𝐷 close to the cylinder, 0.05𝐷 in the far region at the right in block 4. This 

is because the width of a cell in block 4 is 0.05𝐷 while at the cylinder boundary it is even 

smaller than 0.01𝐷. 

The blocks 0, 1, 2 and 3, are designed so that the resolution increases toward the center, not only 

in the 𝑥 direction but also in the radial 𝑦 direction (𝑥 and 𝑦 are in this case the local non-

orthogonal and curvilinear reference axis shown in Figure 2.3). The 𝑦 axis represents just radial 

straight lines. The 𝑥 axis transitions from being straight at the wall boundary at 𝑦 = 0 to 

curvilinear at the cylinder boundary. 

 

Figure 2.3 Blocks 0, 1, 2 and 3 (80x80 cells each) and local curvilinear reference axis 
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Figure 2.4 shows the detail of the first 30 rows (from a total of 80) closest to the center after 

blocks 0, 1, 2 and 3 are assembled. 

The gradual change in grid size toward the center obeys a geometric relation. The ratio of the 

radial dimensions of the last cell at the cylinder boundary, 𝑗 = 80, to the first cell, at 𝑗 = 1 (both 

over the same line), is set as 𝑓 = 0.25. The problem is completely defined in the 𝑦 direction. The 

block is divided along the x direction uniformly. 

 

Figure 2.4 Point (𝒊 = 𝟏𝟎, 𝒋 = 𝟓𝟓) at each block and grid detail close to the cylinder (from 𝒋 = 𝟓𝟏  to  𝒋 = 𝟖𝟎  ) 
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Now for convenience and clarity a new local rectangular (𝑥, 𝑦) coordinate system is used for 

finite difference calculations, see Figure 2.5. For an arbitrary cell (𝑖, 𝑗), where 1 ≤ 𝑖 ≤ 80 and 

1 ≤ 𝑗 ≤ 80, the vertices (𝑖 − 1, 𝑗 − 1), (𝑖, 𝑗 − 1), (𝑖 − 1, 𝑗) and (𝑖, 𝑗) are considered. The local 

coordinates of these vertices are (𝑥𝑖−1,𝑦𝑗−1), (𝑥𝑖 ,𝑦𝑗−1), (𝑥𝑖−1,𝑦𝑗 ) and (𝑥𝑖 ,𝑦𝑗 ). Let us label 

(𝑥𝑒 , 0) as the coordinates for the vertices (𝑖 − 1, 0) at the boundary; and (𝑥𝑐 ,𝑦𝑐) for the vertices 

(𝑖 − 1, 80) along the cylinder boundary. 

 𝑐1 =   2𝐷 − 𝑥𝑒 2 + 4𝐷2 (2.3) 

 𝑐2 = 𝑐1 − 𝐷/2 
(2.4) 

 𝑥𝑐 = 2𝐷 −  
𝐷

2
 

2𝐷 − 𝑥𝑒
𝑐1

 
(2.5) 

 

 

Figure 2.5 Basic geometry for blocks 0, 1, 2 and 3 
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 𝑦𝑐 = 2𝐷 −  
𝐷

2
 

2𝐷

𝑐1
 

(2.6) 

The first length 𝑎1 can be calculated from the  𝑖 − 1,0  vertice to the  𝑖 − 1,1  vertice where the 

geometric progression is given by: 

 𝑎1 =
𝑐2 1 − 𝑓1/79 

1 − 𝑓80/79
 (2.7) 

The length 𝑎𝑗  from the  𝑖 − 1, 𝑗 − 1  vertice to the  𝑖 − 1, 𝑗  vertice can be evaluated as: 

 𝑎𝑗 = 𝑎1 ∗ 𝑓
(𝑗−1)/79 

(2.8) 

As noted before the coordinates at the boundary are written: 

 
𝑥0 = 𝑥𝑒  

𝑦0 = 0 (2.9) 

And for the other vertices: 

 𝑥𝑗 = 𝑥𝑗−1 + 𝑎𝑗
2𝐷 − 𝑥𝑒

𝑐1
 

(2.10) 

 𝑦𝑗 = 𝑦𝑗−1 − 𝑎𝑗
2𝐷

𝑐1
 

(2.11) 

These pairs  𝑥𝑗 , 𝑦𝑗   are converted to a unique coordinate system  𝑥𝑢 ,𝑦𝑢  which in this case 

coincides with the one used for block 0. Then block 0 needs no conversion but the others do 

according to table 2.3. 

block 𝒙𝒖 𝒚𝒖 

0 𝑥𝑗  𝑦𝑗  

1 4𝐷 − 𝑦𝑗  𝑥𝑗  

2 4𝐷 − 𝑥𝑗  4𝐷 − 𝑦𝑗   

3  𝑦𝑗  4𝐷 − 𝑥𝑗   

4  𝑥𝑢 = 4𝐷 + 𝑥𝑗  𝑦𝑗   

Table 2.3 Conversion to a unique coordinate system 
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The grid for block 4 (the fifth block) looks like that shown in Figure 2.6. 

 

Figure 2.6 Block 4 (240x80 cells) 

If a local reference axis for block 4 is located at the bottom-left corner (although the values are 

stored from the right to the left in OpenFoam), a horizontal translation is needed to reach the 

reference axis (valid for block 4 in Table 2.3). 

2.4.  Simulation time interval 

The objective in this section is to define a reasonable value for the time interval used by the 

OpenFoam numerical simulation. Development of ideas presented in this section ends in the 

Courant number definition (see Equation 2.16) when estimating the simulation time interval. 

The grid cells’ size and shape have been defined, and using the inlet velocity 𝑢∞ , as a reference 

value, the computational time interval for the OpenFoam simulation can be established. 

Since velocity is dimensionally the distance divided by the time, it follows, the smallest cell size, 

𝐿𝑠𝑚𝑎𝑙𝑙 , divided by the inlet velocity, 𝑢∞ , can be used to approximate the simulation time interval, 

𝑡𝑖 . The smaller cells exist at the cylinder boundary where their length was set at 0.01𝐷. 

Specifying a diameter of 𝐷 = 0.5 𝑐𝑚  for example yields: 

 𝐿𝑠𝑚𝑎𝑙𝑙 ≅ 0.005 𝑐𝑚  (2.12) 
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To establish a reasonable estimate for the simulation time interval, the maximum velocity in the 

flow region must be estimated first. The flow has a uniform velocity at the inlet but when it 

passes around the cylinder, the flow is constricted and the mean velocity is increased by a factor. 

This factor is the ratio of the cross sectional lengths, so that the mean velocity in the constricted 

area is estimated by: 

 𝑢 𝑐𝑜𝑛𝑠𝑡 . ≅
4

3
𝑢∞  (2.13) 

For now a reference value for the time interval, 𝑡𝑖𝑐 , is estimated by considering flow across this 

constricted region: 

 𝑡𝑖𝑐 =
𝐿𝑠𝑚𝑎𝑙𝑙
𝑢 𝑐𝑜𝑛𝑠𝑡 .

 
(2.14) 

 𝑡𝑖𝑐 ≅
0.005 𝑐𝑚 

4
3𝑢∞

 
(2.15) 

𝑢∞   𝑐𝑚/𝑠  𝑡𝑖𝑐   𝑠  

1 0.00375 

1.2 0.003125 

1.4 0.002679 

Table 2.4 Reference values for the maximum time interval allowed for flow in constricted region 

The Courant number, Co, establishes a limit on the simulation time interval, 𝑡𝑖 , which must be 

smaller than 𝑡𝑖𝑐 : 

 Co =
𝑢 𝑐𝑜𝑛𝑠𝑡 .𝑡𝑖𝑐
𝐿𝑠𝑚𝑎𝑙𝑙

≤ 1 
(2.16) 

To satisfy all cases listed in Table 2.4, the simulation time interval, 𝑡𝑖  (deltaT in OpenFoam), 

must be smaller than 𝑡𝑖𝑐 : 

 𝑡𝑖 = 0.001 𝑠  (2.17) 
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Finally, simulation results are stored as defined by the writeInterval property in OpenFoam that 

was set at 200 × 𝑡𝑖 = 0.2  𝑠 . Since storing results requires more than 10Mb after each time step, 

results are not saved after each computational time interval. The calculations are done precisely, 

every 0.001 𝑠 , but storing results is realized only at certain intervals, e.g. every 10 or 12 frames 

per computation cycle, so as not to exceed disk storage on typical desktop computers. Again it is 

noted that this requirement is established so that the results shown here can be reproduced using 

desktop computers. 

2.5.  Generating OpenFoam simulation “data” 

Here the more important details are described when using OpenFoam running on the Linux 

Operating System (OS). For the grid defined in section 2.3, a high speed single processor 

desktop computer was used to generate the “data” and these results were graphically processed 

running Paraview or VerFlow-V.01 on a laptop computer using Windows OS. 

As a first step, pre-processing tools must be used to modify or create the required OpenFoam 

files, because everything is stored separately (geometry, velocity, pressure, boundary conditions) 

in what are called dictionaries. 

The tools referenced here are either FoamX or some editor program like WinVi. FoamX is a user 

friendly OpenFoam tool, used to manage the data from all of those dictionaries. 

The controlDict dictionary includes information about the solver application (to be used in the 

simulation), the duration of the simulation endTime, the time interval deltaT, the interval of time 

for storing results writeInterval, and the data storage format writeFormat. The next table shows 

an example of those values: 

Property Value 

application icoFoam 

deltaT 0.001 

writeInterval 200 

writeFormat ascii 

Table 2.5 Relevant information in the controlDict dictionary  
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The transportProperties dictionary stores the information of the kinematic viscosity nu, which is 

set as: “nu [0 2 -1 0 0 0 0] 8.9e-07;”. The numbers in the brackets are units of mass, length, time, 

etc. The viscosity is then 8.9 10 −7[𝑚2/𝑠]. 

The blockMeshDict dictionary is the file containing the geometry detail. A scale is used at the 

very beginning of this file as a convertToMeters property and in our case this value is 0.02. 

Following this information are the coordinates of the 20 vertices in three dimensions. Here only 

one cell in the z direction is used to solve the two dimensional problem. It follows the definition 

of the blocks, which includes the vertices, the number of divisions in each direction, and if the 

division is uniform or if it follows a geometric progression relation. To realize this requirement 

the size of the cells are decreased toward the center in the radial direction, here a factor of 0.25 is 

used. In order to get the curvature at the cylinder, the edges are defined by introducing the 

vertices numbers and one additional point along the arc. Finally the patches define the walls, the 

cylinder and the inlet and outlet surfaces. 

The initial velocity and pressure fields are set in the U and p files. 

In the boundary file put the physicalType for the patches. These are wall (no-slip condition), 

inlet, outlet and slip (slip condition). 

The pre-processing part is done when the blockmesh tool is used in FoamX. 

After the pre-processing part is completed, the simulation is executed by selecting the Start 

Calculation button in FoamX. 

Finally, it is necessary to complete the calculations in a post-processing stage by running the Q 

and Vorticity foamUtilities. It is important to note that OpenFoam uses the variable p as the 

pressure per unit density. 

Additional details are given in Appendix A: General Guide to Modify the Original OpenFoam 

Simulation. 
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2.6.  Preliminary graphical results using ParaView 

ParaView is a computer program that was designed to envision data resulting from an OpenFoam 

simulation. In order to see the results in a Microsoft Windows OS, it is necessary to install the 

appropriate version of ParaView and then proceed as follows. Copy the file controlDict in the 

same location (inside the system folder) but with the name controlDict.foam. Here only a portion 

of results are shown using ParaView. 

 

Figure 2.7 OpenFoam result for the pressure per unit density field 

Figure 2.7 shows the pressure per unit density given in units of [𝑚2/𝑠2]. Dimensionless values 

[ ] are added to the color legend bar considering the velocity at the inlet 𝑢∞ = 0.012[𝑚/𝑠]. 

Dimensionless pressure is obtained by dividing the pressure per unit density by the square of the 

velocity at the inlet, 𝑝/𝑢∞
2. Note that the pressure varies over a small range of values in the 

downstream region, where an alternate pattern of relative low pressure is localized at each side 

around the center line. This low pressure pattern is associated with vortices traveling 

downstream. 

In Figure 2.8 the vorticity field 𝑤 given in units of [1/𝑠] for the same instant of time shown in 

Figure 2.7. Note that the vorticity values are close to zero at the center of the color legend. In 

general, when the vorticity is positive the flow is moving clockwise and when negative, counter-

clockwise. In contrast to the general case, the vorticity does not necessarily directly identify 

vortices in the flow. An example of this is given at the cylinder boundary, where the vorticity 
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reaches higher values (in magnitude) although the flow is moving on each side of the cylinder in 

the same direction.  

 

Figure 2.8 OpenFoam result for the vorticity field 

A dimensionless vorticity has been added again to the graph in Figure 2.8, which is obtained 

when dividing the vorticity by the velocity at the inlet (𝑢∞ = 0.012[𝑚/𝑠]) and multiplying this 

result by the diameter (𝐷 = 0.005[𝑚]),  𝑤/𝑢∞ 𝐷. The Reynolds number in this case is 67.4. 

Both, Figures 2.7 and 2.8, capture important details of how the flow generates the alternating 

vortices in the downstream region and how their intensity decreases as the flow moves to the 

outlet. 

Although ParaView is a powerful program that allows us to choose and change colors in the 

legend bar, zoom, camera angle, etc., our understanding is limited to features uniquely designed 

in this program. ParaView works for most general applications. However, the objective here is 

different, which is to calculate and envision the qualitative content of information for more than 

one variable simultaneously in space and time, and envision results using different mathematical 

models developed in Chapter 3. Imagination should not be limited to the use of conventional 

tools; here tools are created that solve our specific problem. This is the motivation for creating a 

customized graphical and analytical computer tool called VerFlow-V.01which was used for 

exploring and envisioning flow around a cylinder in this thesis. 
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2.7.  Frequency and time resolution optimization using VerFlow_V.01 

 

Figure 2.9 Selected point in the wake and negative 𝒖𝒙 

Here data generated by OpenFoam is used by VerFlow-V.01 to envision periodic behavior at a 

specific point, see Appendix C for details on how to use VerFlow-V.01. The velocity at the inlet 

for this case is 𝑢∞ = 0.01  𝑚/𝑠  (Re=56.2), assuming water is the fluid. 

Figure 2.9 shows a reverse flow region in green, in which the velocities in the horizontal 

direction are negative (pointing to the left). In this region, and close to it, the velocity has 

relatively large variations in direction and magnitude. The point in block 1 is selected at  𝑖, 𝑗 =

 50,20 . These coordinates are converted to  𝑥𝑢 ,𝑦𝑢 =  1.72, 1.14   𝑐𝑚 . In other words, the 

point is located 0.72  𝑐𝑚  to the right and 0.14  𝑐𝑚  to the top from the center of the cylinder. 

The dimensionless values from the center are 1.44 𝐷 to the right and 0.28 𝐷 to the top, again see 

Appendix C for definitions. 

 

Figure 2.10 𝒖𝒙 as a function of time for periodic behavior (𝒖∞ = 𝟎.𝟎𝟏  𝒎/𝒔 ) 
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At point  𝑥𝑢 ,𝑦𝑢  a periodic behavior for the velocity component, 𝑢𝑥 , is observed in Figure 2.10, 

where the information is shown starting at time 22.0  𝑠  after which we observe the flow is 

periodic. This starting time is relative where 40  𝑠  for example can be replaced by 0 𝑠  in a new 

simulation using OpenFoam. 

2.7.1 Determining the shedding frequency 

In this section, several models are developed for calculating the shedding frequency and period. 

There are two reasons for studying these different models. First, to establish a more precise value 

for the period and for the frequency and second, to improve time resolution, which in the next 

section, is used to understand complexities in the flow downstream of the cylinder. For example, 

how, when and exactly where complex convergence zones appear and what is their role in the 

development of periodic flow.  

 

Figure 2.11 Primary selection for one cycle from time 𝟐𝟒.𝟐  𝒔  to time  𝟐𝟔.𝟔  𝒔  

The first approximation for one cycle is done by simple observation. The highlighted points at 

24.2  𝑠  and 26.6  𝑠  in Figure 2.10 defines one complete cycle as shown in Figure 2.11. 

Each point in Figure 2.11 is associated with a different “frame” in the representation of the flow. 

According to this graph, twelve frames are enough to represent one cycle, because the thirteenth 

is the closest to the first one. The time for one cycle is the period, which in this example is 

labeled 𝑇1: 

 𝑇1 = 26.6  𝑠 − 24.2  𝑠 = 2.4  𝑠  (2.18) 

where the frequency 𝑓1 is the reciprocal of the period 𝑇1: 
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 𝑓1 =
1

𝑇1
=

1

2.4  𝑠 
= 0.4167 𝐻𝑧  (2.19) 

The maximum error in determining 𝑇1 is the time interval between frames divided by two: 

±0.1 𝑠 . So the following expression is based in data from only one cycle: 

 
2.3[𝑠] ≤ 𝑇 ≤ 2.5[𝑠] 

0.4[𝐻𝑧] ≤ 𝑓 ≤ 0.4348[𝐻𝑧] (2.20) 

Now taking advantage of the information over several cycles in Figure 2.10, the period and 

shedding frequency can be calculated more precisely. For one cycle the initial and final points on 

the vertical axis are not identical but similar, giving a small error. Taking more cycles, this error 

grows. A new point is considered which again matches well with the first one, but only after 

several cycles. That point is found after nine cycles. Figure 2.12 shows the selected nine cycles. 

The time step is 0.2  𝑠 . The first time shown in the graph is 24.2  𝑠  and the last time is 46.0  𝑠  

which is also highlighted in Figure 2.10. This gives a new period labeled 𝑇9: 

 𝑇9 =
46.0  𝑠 − 24.2  𝑠 

9
= 2.4222  𝑠  (2.21) 

 𝑓9 =
1

𝑇9
=

1

2.42  𝑠 
= 0.4132 𝐻𝑧  (2.22) 

 

 

Figure 2.12 𝒖𝒙 data for one cell in nine cycles and one hundred nine consecutive times 
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Now the error is the time interval divided by nine cycles and must be divided by two because the 

positive and negative variations are included in the error: ±0.0111 𝑠 . The period and frequency 

are limited, using the nine cycles, as follows: 

 
2.4111[𝑠] ≤ 𝑇 ≤ 2.4333[𝑠] 

0.4110[𝐻𝑧] ≤ 𝑓 ≤ 0.4147[𝐻𝑧] (2.23) 

It is clear that the frequency 𝑓9 and the period 𝑇9 are better results than 𝑓1 and 𝑇1. Note that this 

information is obtained from only one cell among 44800 cells over the entire region, which 

includes blocks 0 through 4. 

A more accurate evaluation of the nine cycles is required for all cells over the entire region. The 

horizontal velocity, 𝑢𝑥 , at time 24.2  𝑠  is represented in the Figure 2.13.  

 

Figure 2.13 Instantaneous frame showing 𝒖𝒙 for the time 𝟐𝟒.𝟐  𝒔 , color legend Figure 2.14. 

The color legend in Figure 2.14, applies to Figures 2.13, 2.15, 2.16, 2.17, 2.18 and 2.19. In these 

figures and according to the color legend, the higher velocities are represented in blue and the 

lower in green. Equally spaced black lines in the color legend, Figure 2.14, appear as contour 

lines whose line width appears to expand over a region in Figure 2.13. This expansion of the line 

width is highlighted as a red circle in Figure 2.13, which can also be used to envision gradients. 

This idea of envisioning gradients is included as a graphical model in VerFlow-V.01. 

Note that the contour lines were moved to get one of the contour lines to coincide with the inlet 

velocity. 



37 
 

 

Figure 2.14 Legend for Figures 2.13, 2.15 – 2.19 

Figures 2.15, 2.16 and 2.17 use contour lines in orange for times 45.8  𝑠 , 46  𝑠  and 46.2  𝑠  

which are compared with contour lines in black starting at  24.2  𝑠  in Figure 2.13. 

This comparison allows us to see the accumulated error after nine cycles at time 45.8  𝑠  over 

the entire region in Figure 2.15. 

The times 46.0  𝑠  (orange contours) and 24.2  𝑠  (black contours) match very well as seen in 

Figure 2.16. This confirms the validity of the value 𝑇9 for the period. 

 

Figure 2.15 𝒖𝒙 contour lines for 𝟒𝟓.𝟖  𝒔  in yellow compared over the entire region for 𝟐𝟒.𝟐  𝒔 , color legend Figure 2.14 
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Figure 2.16 𝒖𝒙 contour lines for 𝟒𝟔.𝟎  𝒔  in yellow compared over the entire region for 𝟐𝟒.𝟐  𝒔 , color legend Figure 2.14 

 

Figure 2.17 𝒖𝒙 contour lines for 𝟒𝟔.𝟐  𝒔  in yellow compared over the entire region for 𝟐𝟒.𝟐  𝒔 , color legend Figure 2.14 

In Figure 2.17, the frame for time 46.2  𝑠  (orange contours) is again too different compared 

with that for time 24.2  𝑠  (black contours). 

But why do nine cycles yield better result than eight or ten? To answer this question, it is 

necessary to compare the frames for the times 43.6  𝑠  and 48.4  𝑠  with 24.2  𝑠 . 

 

Figure 2.18 𝒖𝒙 contour lines for 𝟒𝟑.𝟔  𝒔  in yellow compared over the entire region for 𝟐𝟒.𝟐  𝒔 , color legend Figure 2.14 

Although results are close for both time 43.6  𝑠  in Figure 2.18 and time 48.4  𝑠  in Figure 2.19, 

neither match as well as those shown in Figure 2.16. The orange contours, which are overlaid on 
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top of the black contours, appear to move slightly to the right in Figure 2.18 and to the left in 

Figure 2.19. 

 

Figure 2.19 𝒖𝒙 contour lines for 𝟒𝟖.𝟒  𝒔  in yellow compared over the entire region for 𝟐𝟒.𝟐  𝒔 , color legend Figure 2.14 

So, the selection of nine cycles is better than those of eight or ten cycles, and this result is 

realized not for one point but for all points over the entire region. For other cases, the pattern is 

repeated in a different number of cycles but the procedure is exactly the same. This discussion 

demonstrates why a graphical computer program needs to be customized within the scientific 

context as understood by the fluid dynamic researcher, e.g. “think outside the computer 

programmer’s box”. 

2.7.2 Fourier Transform 

Investigating periodicity for this problem continues where 𝑢∞ = 1 𝑐𝑚/𝑠  and the data is 

evaluated from the same point that was highlighted in Figure 2.9. In order to identify the main 

frequencies involved, the Fourier Discrete Transform from Excel is used following the procedure 

detailed in this link: 

http://online.sfsu.edu/~larryk/Common%20Files/Excel.FFT.pdf 

The data is sampled every 0.2  𝑠  which means the sampling frequency is 5  𝐻𝑧 . The method is 

restricted to a number of samples 𝑁, such that 𝑁 is a power of 2, e.g. 27 = 128, so 𝑁 is selected 

as 128. The Fourier Analysis tool in Excel is applied where the output data is 128 complex 

coefficients FFTcomplex. 

The magnitude of these complex coefficients is divided by one half the number 𝑁 and this is 

labeled FFTmag. 

http://online.sfsu.edu/~larryk/Common%20Files/Excel.FFT.pdf
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Divide 5  𝐻𝑧  by 𝑁 to get the frequency interval of 0.0391  𝐻𝑧 . The frequency that 

corresponds to each sample varies linearly from 0 to 5  𝐻𝑧  minus the frequency interval labeled 

FFTfreq. 

Finally the plot of the FFTmag as a function of the frequency FFTfreq is shown in Figure 2.20.  

 

Figure 2.20 Magnitude of the Fourier Coefficients vs. frequency  

The dominant frequency is: 

 𝑓𝐹𝐹𝑇 = 0.4297 𝐻𝑧  
(2.24) 

 𝑇𝐹𝐹𝑇 =
1

𝑓𝐹𝐹𝑇
= 2.3273  𝑠  (2.25) 

A reasonable error in the prediction of the dominant frequencies using this method is equal to 

±0.0195  𝐻𝑧 . The main frequency and period based on the Fourier Transform are limited as 

follows: 

 
0.4102 [𝐻𝑧] ≤ 𝑓 ≤ 0.4492  𝐻𝑧  

2.2261[𝑠] ≤ 𝑇 ≤ 2.4381[𝑠] (2.26) 

There are at least two clear secondary frequencies: 
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 𝑓𝐹𝐹𝑇2 = 0.8203 ± 0.0195  𝐻𝑧  
(2.27) 

 𝑓𝐹𝐹𝑇3 = 1.25 ± 0.0195 𝐻𝑧  
(2.28) 

2.7.3 Comparative results of sections 2.7.1 and 2.7.2 

Results in the previous sections are summarized in Table 2.6: 

 
Period [𝑠] Frequency  𝐻𝑧  

 
Number of cycles 

FFT 
Number of cycles 

FFT 

 
1 9 1 9 

Calc. 2.4 2.4222 2.3273 0.4167 0.4132 0.4297 

min  2.3  2.4111 2.2261  0.4 0.4110   0.4102 

max  2.5  2.4333 2.4381  0.4348  0.4147  0.4492  

err  ±0.1 ±0.0111  0.2120    0.0348   0.0037   ±0.0195  

Table 2.6 Period and main frequencies obtained from three different methods 

These results, demonstrate that a better approximation of the main frequency from nine cycles is 

realized when the smallest of the maximum values and the biggest of the minimum are observed, 

both for period and frequency. Results indicate a small error. However, neither 1 cycle nor 9 

cycles solutions reveal the secondary frequencies as the Fourier Transform does. 

2.7.4 Strouhal number 

The Strouhal number for this flow (Re = 56.2) is calculated using Equation 1.21: 

 𝑆𝑡 ≡
𝑓𝑆𝐷

𝑢∞
=

0.4132 𝐻𝑧 0.005[𝑚]

0.01[
𝑚
𝑠 ]

= 0.2066 
(2.29) 

The result of the Strouhal number for the simulated flow with Reynolds number Re = 67.4 

(period 1.95[s] and velocity 0.012[m/s]) is St = 0.2137.  These results are close to the constant 

value 0.22 (Den Hartog, 1953), where it is possible that the top and bottom walls affect the 

results when compared to unbounded flow over the cylinder. For these Reynolds numbers, 

experimental data (Churchill, 1988) gives smaller Strouhal numbers, around 0.15. Kundu et al 

points that 3D simulations show an asymptote of 0.21 which includes 3D instabilities while 2D 

experiments with soap film gives an asymptote of 0.2417 (Kundu & Cohen, 2004). The 2D 
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simulation instead of 3D and the constriction of the flow must generate this change as it also 

affects the drag (see Figure 4.1). 

2.7.5 Improving the time resolution 

Returning again to the same problem where 𝑢∞ = 1 𝑐𝑚/𝑠  , the data is sampled every 0.2[𝑠] in 

Figure 2.12. The idea is to build a single cycle but using the information over nine cycles. 

Combining data points from nine cycles into one is justified because the 109 points shown in 

Figure 2.12 were selected from 21,800 points that were calculated by the OpenFoam simulation 

every 0.001[𝑠] over the same nine cycles. 

The number 109 is not divisible by 9 and, as a consequence, all those time points represent a 

unique (not repeated) location in the cycle. Because these points are unique, information can be 

reorganized in a coherent order. 

Instead of having 109 frames in nine cycles with a uniform time interval of 0.2[𝑠] we will have 

109 frames in one cycle with a uniform time interval given by: 

 0.2/9 [𝑠] = 0.022 [𝑠] (2.30) 

This is definitively an improvement in time resolution. 

To specify the final correct order, the data is reordered as follows. The original data can be 

written as shown in Table 2.7. Each of the nine cycles are represented in each of the horizontal 

rows where the initial and end frames, 24.2 and 46.0 are included at the corners. 

24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 
 

 
26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 

 

 
29.2 29.4 29.6 29.8 30.0 30.2 30.4 30.6 30.8 31.0 31.2 31.4 

 

 
31.6 31.8 32.0 32.2 32.4 32.6 32.8 33.0 33.2 33.4 33.6 33.8 

 

 
34.0 34.2 34.4 34.6 34.8 35.0 35.2 35.4 35.6 35.8 36.0 36.2 

 

 
36.4 36.6 36.8 37.0 37.2 37.4 37.6 37.8 38.0 38.2 38.4 38.6 

 

 
38.8 39.0 39.2 39.4 39.6 39.8 40.0 40.2 40.4 40.6 40.8 41.0 

 

 
41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.2 43.4 

 

 
43.6 43.8 44.0 44.2 44.4 44.6 44.8 45.0 45.2 45.4 45.6 45.8 46.0 

Table 2.7 Original nine cycles data 
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Close examination of data in Figure 2.12 suggests the proper order to follow. The time point 

following time point 24.2 must be 43.6 and after that 41.2, etc. as shown in Table 2.8. 

        
24.2 

43.6 41.2 38.8 36.4 34.0 31.6 29.2 26.8 24.4 

43.8 41.4 39.0 36.6 34.2 31.8 29.4 27.0 24.6 

44.0 41.6 39.2 36.8 34.4 32.0 29.6 27.2 24.8 

44.2 41.8 39.4 37.0 34.6 32.2 29.8 27.4 25.0 

44.4 42.0 39.6 37.2 34.8 32.4 30.0 27.6 25.2 

44.6 42.2 39.8 37.4 35.0 32.6 30.2 27.8 25.4 

44.8 42.4 40.0 37.6 35.2 32.8 30.4 28.0 25.6 

45.0 42.6 40.2 37.8 35.4 33.0 30.6 28.2 25.8 

45.2 42.8 40.4 38.0 35.6 33.2 30.8 28.4 26.0 

45.4 43.0 40.6 38.2 35.8 33.4 31.0 28.6 26.2 

45.6 43.2 40.8 38.4 36.0 33.6 31.2 28.8 26.4 

45.8 43.4 41.0 38.6 36.2 33.8 31.4 29.0 26.6 

46.0 
        

Table 2.8 Rotated data to reach a new order 

 

The desired order is accomplished by rotating the Table 2.7 clockwise ninety degrees as shown 

in Table 2.8. The desired reordering, although unexpected, is indeed accomplished by this 

geometric transformation. 

        
24.20 

24.22 24.24 24.27 24.29 24.31 24.33 24.36 24.38 24.40 

24.42 24.44 24.47 24.49 24.51 24.53 24.56 24.58 24.60 

24.62 24.64 24.67 24.69 24.71 24.73 24.76 24.78 24.80 

24.82 24.84 24.87 24.89 24.91 24.93 24.96 24.98 25.00 

25.02 25.04 25.07 25.09 25.11 25.13 25.16 25.18 25.20 

25.22 25.24 25.27 25.29 25.31 25.33 25.36 25.38 25.40 

25.42 25.44 25.47 25.49 25.51 25.53 25.56 25.58 25.60 

25.62 25.64 25.67 25.69 25.71 25.73 25.76 25.78 25.80 

25.82 25.84 25.87 25.89 25.91 25.93 25.96 25.98 26.00 

26.02 26.04 26.07 26.09 26.11 26.13 26.16 26.18 26.20 

26.22 26.24 26.27 26.29 26.31 26.33 26.36 26.38 26.40 

26.42 26.44 26.47 26.49 26.51 26.53 26.56 26.58 26.60 

26.62 
        
Table 2.9 New names for the 109 time points in one cycle. 



44 
 

The proper order is now realized, however these points need to be assigned to new times. The 

first point is fixed and the others are reassigned as shown in Table 2.9. 

The result of the new order is shown in Figure 2.21 as a smooth single cycle, which can be 

compared with the previous cycle in Figure 2.11, over the same time period. This higher 

resolution cycle is necessary when comparing different properties graphically over the same nine 

simulation cycles. 

 

Figure 2.21 Increased resolution for one cycle 

As expected, this method is much better than using linear interpolation on the original data. This 

approach is applied not only at one point, but over the entire region, so that the final result is 

smooth in time where the movement of a particle at each point can be envisioned more 

accurately both in a quantitative and qualitative sense as discussed in the introduction, Section 

1.2. 

2.8.  Chapter nomenclature 

𝜈  kinematic viscosity 

𝑎1  first term (length) in the geometric progression 

𝑎𝑗   j-term (length) in the geometric progression 

𝑐1  geometric radius defined in Figure 2.5 

𝑐2  𝑐1 minus the cylinder radius 
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Calc. calculated value 

𝐷 diameter of the cylinder 

𝐷 Courant number 

err error 

𝑓 factor for the geometric progression OR frequency 

𝑓1 frequency based in one cycle information 

𝑓9 frequency based in nine cycles information 

𝑓𝐹𝐹𝑇  main frequency based in the Fast Fourier Transform 

𝑓𝐹𝐹𝑇  second frequency based in the Fast Fourier Transform 

𝑓𝐹𝐹𝑇  third frequency based in the Fast Fourier Transform 

𝐹𝐹𝑇 Fast Fourier Transform 

𝑓𝑠 shedding frequency 

𝑖 relative position of a cell in the local curvilinear 𝑥 direction 

𝑗 relative position of a cell in the local curvilinear 𝑦 direction 

𝐿𝑠𝑚𝑎𝑙𝑙  reference characteristic size for smaller cells in the whole mesh 

min minimum value 

max maximum value 

p pressure per unit density field file (OpenFoam) 

Q second invariant of the velocity gradient field file and utility (OpenFoam) 

Re Reynolds number 

St Strouhal number 
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𝑇1 period based in one cycle information 

𝑇9 period based in nine cycles information 

𝑡𝑖  time interval 

𝑡𝑖𝑐  reference value for time interval associated with constricted region 

𝑇𝐹𝐹𝑇  period based in the Fast Fourier Transform 

𝑈  velocity field file (OpenFoam) 

𝑢∞   velocity at the inlet 

𝑢 𝑐𝑜𝑛𝑠𝑡 .  mean velocity at constricted region when the flow passes around the cylinder 

𝑥𝑐   local rectangular 𝑥 coordinate at internal boundary defined in Figure 2.5 

𝑥𝑒   local rectangular 𝑥 coordinate at external boundary defined in Figure 2.5 

𝑥𝑗   local rectangular 𝑥 coordinate of internal points for cell 𝑗 

𝑥𝑗−1  local rectangular 𝑥 coordinate of internal points for cell 𝑗 − 1 

𝑥0  local rectangular 𝑥 coordinate equal to 𝑥𝑒  

𝑥𝑢   horizontal unique coordinate 

𝑦𝑐   local rectangular 𝑦 coordinate defined in Figure 2.5 

𝑦𝑗−1  local rectangular 𝑦 coordinate of internal points for cell 𝑗 − 1 

𝑦0  local rectangular 𝑦 coordinate equal to 0 

𝑦𝑢   vertical unique coordinate 
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Chapter 3 .  Mathematical and Numerical Models 

In this chapter mathematical expressions are derived that are used in Chapters two and four. One 

of the goals is to explore the second invariant of the velocity gradient and its relationship with 

the pressure field using numerical results from simulation “data” calculated by OpenFoam. The 

second invariant of the velocity gradient appears in the literature with different mathematical 

expressions, nomenclature and names. Three of these expressions are derived for the second 

invariant of the velocity gradient ensuring they are equivalent for an incompressible flow.  

With 2D numerical simulation results, finite difference expressions are introduced that calculate 

pressure, the second invariant of the velocity gradient, drag and lift forces from simulation 

“data”. For comparison and use in the entire region, OpenFoam also calculates the second 

invariant. In Section 4.5 comparison of three different finite difference expressions ensure again 

that the second invariant of the velocity gradient from OpenFoam matches with these three 

expressions validating that they are indeed identical except by a factor of negative two. 

The Navier Stokes equations establish the relation of the velocity field in space and time, while 

pressure depends on space. The dependence of pressure on time is not reflected directly in these 

equations. Hence, the pressure field is related to the velocity field over the entire region 

including boundary conditions at each instant of time. A common finite difference approach first, 

predicts how the velocity field changes in time, and second, determines the pressure field from 

the velocity field. For an incompressible flow, the pressure field is a function of the second 

invariant of the velocity gradient defined in this chapter. In this thesis, the second invariant of the 

velocity gradient is used to predict, not only the pressure at a point over the entire region, but 

also contributes to the drag and lift forces on the cylinder at any arbitrary point in this region. 

These contributions can now be mapped over the entire region. The development of the 

equations discussed above is the objective of this chapter. 
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3.1.  Pressure independent of time 

In a general 3D space, the Navier Stokes and the continuity equations can be written as (1.1) and 

(1.5). For a 2D problem with no external forces velocities, principal axes and body forces are: 

 𝑢 = 𝑢1   ,   𝑣 =  𝑢2 
(3.1) 

 𝑥 = 𝑥1   ,   𝑦 =  𝑥2 (3.2) 

 𝑓1 = 𝑓2 = 0 (3.3) 

The Navier-Stokes equations become: 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑃

𝜕𝑥
+ 𝜈  

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
  (3.4) 

 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑃

𝜕𝑦
+ 𝜈  

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
  (3.5) 

And the continuity equation becomes: 

 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 

(3.6) 

In order to eliminate time, in the classic method Equation 3.4 is differentiated with respect to 𝑥, 

Equation 3.5 is differentiated with respect to 𝑦 and the two resultant equations are added. This 

procedure is shown in Equations 3.7 to 3.15. 

 
𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑡
 +

𝜕

𝜕𝑥
 𝑢

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑥
 𝑣

𝜕𝑢

𝜕𝑦
 = −

𝜕

𝜕𝑥
 
𝜕𝑃

𝜕𝑥
 + 𝜈

𝜕

𝜕𝑥
 
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
  (3.7) 

 
𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑡
 +

𝜕

𝜕𝑦
 𝑢

𝜕𝑣

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝑣

𝜕𝑣

𝜕𝑦
 = −

𝜕

𝜕𝑦
 
𝜕𝑃

𝜕𝑦
 + 𝜈

𝜕

𝜕𝑦
 
𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
  (3.8) 
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𝜕

𝜕𝑡
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 +

𝜕

𝜕𝑥
 𝑢

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑥
 𝑣

𝜕𝑢

𝜕𝑦
 +

𝜕

𝜕𝑦
 𝑢

𝜕𝑣

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝑣

𝜕𝑣

𝜕𝑦
 

= −
𝜕

𝜕𝑥
 
𝜕𝑃

𝜕𝑥
 + 𝜈

𝜕

𝜕𝑥
 
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
 −

𝜕

𝜕𝑦
 
𝜕𝑃

𝜕𝑦
 

+ 𝜈
𝜕

𝜕𝑦
 
𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
  

(3.9) 

The first term cancels by applying the continuity equation. Working with the remaining terms: 

 

𝜕

𝜕𝑥
 𝑢

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑥
 𝑣

𝜕𝑢

𝜕𝑦
 +

𝜕

𝜕𝑦
 𝑢

𝜕𝑣

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝑣

𝜕𝑣

𝜕𝑦
  

= −
𝜕

𝜕𝑥
 
𝜕𝑃

𝜕𝑥
 + 𝜈

𝜕

𝜕𝑥
 
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
 −

𝜕

𝜕𝑦
 
𝜕𝑃

𝜕𝑦
 + 𝜈

𝜕

𝜕𝑦
 
𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
  

(3.10) 

 

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
 +

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑦
  

+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
+ 𝑢

𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑥
 +

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 𝑣

𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
  

= − 
𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
 + 𝜈  

𝜕3𝑢

𝜕𝑥3
+

𝜕

𝜕𝑥
 
𝜕2𝑢

𝜕𝑦2
 +

𝜕3𝑣

𝜕𝑦3
+

𝜕

𝜕𝑦
 
𝜕2𝑣

𝜕𝑥2
   

(3.11) 

 

 
𝜕𝑢

𝜕𝑥
 

2

+ 𝑢
𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
 + 2

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑦
 + 𝑢

𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑥
 +  

𝜕𝑣

𝜕𝑦
 

2

+ 𝑣
𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
 

= − 
𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
 + 𝜈  

𝜕3𝑢

𝜕𝑥3
+

𝜕

𝜕𝑥
 
𝜕2𝑢

𝜕𝑦2
 +

𝜕3𝑣

𝜕𝑦3
+

𝜕

𝜕𝑦
 
𝜕2𝑣

𝜕𝑥2
   

(3.12) 

 

 
𝜕𝑢

𝜕𝑥
 

2

+ 𝑢
𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
 + 2

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕

𝜕𝑦
 
𝜕𝑢

𝜕𝑥
 + 𝑢

𝜕

𝜕𝑥
 
𝜕𝑣

𝜕𝑦
 +  

𝜕𝑣

𝜕𝑦
 

2

+ 𝑣
𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
  

= − 
𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
 + 𝜈  

𝜕2

𝜕𝑥2
 
𝜕𝑢

𝜕𝑥
 +

𝜕2

𝜕𝑦2
 
𝜕𝑢

𝜕𝑥
 +

𝜕2

𝜕𝑦2
 
𝜕𝑣

𝜕𝑦
 +

𝜕2

𝜕𝑥2
 
𝜕𝑣

𝜕𝑦
   

(3.13) 

 

 
𝜕𝑢

𝜕𝑥
 

2

+ 𝑢
𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 + 2

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕

𝜕𝑦
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 +  

𝜕𝑣

𝜕𝑦
 

2

 

= − 
𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
 + 𝜈  

𝜕2

𝜕𝑥2
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 +

𝜕2

𝜕𝑦2
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
   

(3.14) 

Using again the continuity equation and dropping the corresponding terms results in Equation 

3.15, a first form of Poisson equation. 
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𝜕𝑢

𝜕𝑥
 

2

+ 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+  

𝜕𝑣

𝜕𝑦
 

2

= − 
𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  (3.15) 

Modification of Equation 3.15 by adding and subtracting an additional term in the left hand side 

gives: 

  
𝜕𝑢

𝜕𝑥
 

2

+ 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+  

𝜕𝑣

𝜕𝑦
 

2

+ 2
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
− 2

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
= − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  (3.16) 

By changing the order of the terms and factoring: 

  
𝜕𝑢

𝜕𝑥
 

2

+ 2
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
+  

𝜕𝑣

𝜕𝑦
 

2

+ 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
− 2

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
= − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  (3.17) 

  
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 

2

+ 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
− 2

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
= − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  (3.18) 

Once more using the continuity equation simplifies Equation 3.18 to Equation 3.19, a second 

form of Poisson equation. 

 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
− 2

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
= − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  (3.19) 

A third equivalent result can be obtained from the first result (3.15) by adding the square of the 

continuity equation to the left hand side and two additional zeros (functions of the continuity 

equation) to the right hand side: 

 

 
𝜕𝑢

𝜕𝑥
 

2

+ 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+  

𝜕𝑣

𝜕𝑦
 

2

+  
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 

2

+ 2𝑢
𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 + 2𝑣

𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑥
 

= − 
𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
 + 02 + 2𝑢

𝜕

𝜕𝑥
 0 + 2𝑣

𝜕

𝜕𝑦
 0  

(3.20) 

 

 
𝜕𝑢

𝜕𝑥
 

2

+ 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+  

𝜕𝑣

𝜕𝑦
 

2

+  
𝜕𝑢

𝜕𝑥
 

2

+ 2
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
+  

𝜕𝑣

𝜕𝑦
 

2

+ 2𝑢
𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
 + 2𝑢

𝜕

𝜕𝑥
 
𝜕𝑣

𝜕𝑦
 

+ 2𝑣
𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
 + 2𝑣

𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
 = − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
 + 0 + 0 + 0 

(3.21) 
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2  
𝜕𝑢

𝜕𝑥
 

2

+ 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 2  

𝜕𝑣

𝜕𝑦
 

2

+ 2
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
+ 2𝑢

𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
 + 2𝑢

𝜕

𝜕𝑥
 
𝜕𝑣

𝜕𝑦
 

+ 2𝑣
𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
 + 2𝑣

𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
 = − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  

(3.22) 

Reorganizing terms gives: 

 

 2  
𝜕𝑢

𝜕𝑥
 

2

+ 2𝑢
𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
  +  2  

𝜕𝑣

𝜕𝑦
 

2

+ 2𝑣
𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
  +  2

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
+ 2𝑢

𝜕

𝜕𝑥
 
𝜕𝑣

𝜕𝑦
  

+  2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 2𝑣

𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
  = − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  

(3.23) 

Solving inside each bracket reduces to the following expressions: 

 

 2
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑥
+ 2𝑢

𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
  +  2

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 2𝑣

𝜕

𝜕𝑦
 
𝜕𝑣

𝜕𝑦
  +  2

𝜕

𝜕𝑥
 𝑢  

𝜕𝑣

𝜕𝑦
   

+  2
𝜕

𝜕𝑥
 𝑣  

𝜕𝑢

𝜕𝑦
   = − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  

(3.24) 

  2
𝜕

𝜕𝑥
 𝑢

𝜕𝑢

𝜕𝑥
  +  2

𝜕

𝜕𝑦
 𝑣

𝜕𝑣

𝜕𝑦
  + 2

𝜕

𝜕𝑥
 
𝜕𝑢𝑣

𝜕𝑦
 = − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  (3.25) 

  
𝜕

𝜕𝑥
 
𝜕𝑢2

𝜕𝑥
  +  

𝜕

𝜕𝑦
 
𝜕𝑣2

𝜕𝑦
  + 2

𝜕2𝑢𝑣

𝜕𝑥𝜕𝑦
= − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  (3.26) 

The final result is given in 3.27, a third expression for the Poisson equation. 

 
𝜕2𝑢2

𝜕𝑥2
+
𝜕2𝑣2

𝜕𝑦2
+ 2

𝜕2𝑢𝑣

𝜕𝑥𝜕𝑦
= − 

𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
  

(3.27) 

Combining Equations 1.6 and 1.7, used by Fromm (Fromm, 1963) yields an equivalent result to 

Equation 3.27. Note that Fromm used 𝑃 as the pressure and 𝑃 in Equation 3.27 is the pressure 

per unit density. 

Equations 3.15, 3.19 and 3.27 are three equivalent expressions rewritten here as Equations 3.28, 

3.29 and 3.30 switching the left and right hand sides. These three equations are used in the 

following section to demonstrate three equivalent forms of the second invariant of the velocity 

gradient. 
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𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
= − 

𝜕𝑢

𝜕𝑥
 

2

− 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
−  

𝜕𝑣

𝜕𝑦
 

2

 (3.28) 

 
𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
= −2

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 2

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
 (3.29) 

 
𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
= −

𝜕2𝑢2

𝜕𝑥2
−
𝜕2𝑣2

𝜕𝑦2
− 2

𝜕2𝑢𝑣

𝜕𝑥𝜕𝑦
 (3.30) 

3.2.  Q: the second invariant of the velocity gradient 

In this section, Equation 3.31 defines 𝑄 as the second invariant of the velocity gradient, which is 

the same as presented in Equation 1.15. Expansion of this equation and comparison to equation 

3.28 are also presented to demonstrate that the right hand side of Equations 3.28, 3.29 and 3.30 

are equal to the second invariant of the velocity gradient. Finite difference forms of the three 

expressions of 𝑄 are derived here and they are used in VerFlow-V.01 to compare with the second 

invariant of the velocity gradient obtained from OpenFoam. It was subsequently confirmed that 

these three expressions are in fact equivalent to the expression used by OpenFoam. 

The definition of 𝑄 is given by: 

 𝑄 = −
1

2

𝜕𝑢𝑘
𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑘

 (3.31) 

3.2.1 2D expressions for Q 

Expanding equation (3.31) for the 2D problem and using equations (3.1), (3.2) and (3.3) we 

have: 

 𝑄 = −
1

2
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
+
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑦
  

(3.32) 

 2𝑄 = − 
𝜕𝑢

𝜕𝑥
 

2

− 2
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
−  

𝜕𝑣

𝜕𝑦
 

2

 (3.33) 

The right hand side of this expression matches the right hand side of (3.28), therefore:    
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𝜕2𝑃

𝜕𝑥2
+
𝜕2𝑃

𝜕𝑦2
= 2𝑄 (3.34) 

Where 𝑄 can be evaluated from one of the following choices: 

 𝑄 = −
1

2
 
𝜕𝑢

𝜕𝑥
 

2

−
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
−

1

2
 
𝜕𝑣

𝜕𝑦
 

2

 (3.35) 

 𝑄 = −
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
+
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
 

(3.36) 

 𝑄 = −
1

2

𝜕2𝑢2

𝜕𝑥2
−

1

2

𝜕2𝑣2

𝜕𝑦2
−
𝜕2𝑢𝑣

𝜕𝑥𝜕𝑦
 (3.37) 

From equations 3.34 and 3.35, a relationship between pressure and the velocity field is given by 

𝑄. The first and third terms of 𝑄 in equation 3.35, −
1

2
 
𝜕𝑢

𝜕𝑥
 

2

 and −
1

2
 
𝜕𝑣

𝜕𝑦
 

2

, are either zero or 

negative. The factors in the second term in Equation 3.35, −
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
,  can be interpreted separately 

as follows. To get counter clockwise rotation, the factor 
𝜕𝑣

𝜕𝑥
 must be positive and the factor 

𝜕𝑢

𝜕𝑦
 

must be negative at the same time. Similarly, to get clockwise rotation, 
𝜕𝑣

𝜕𝑥
 must be negative and 

𝜕𝑢

𝜕𝑦
 positive simultaneously. In both cases, the product −

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
 results positive. In other words, 

positive values of the second term of 𝑄 in Equation 3.35, −
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
, imply rotation and rotation 

implies positive values of −
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
. Since the first and third terms in Equation 3.35 are also 

positive, rotation implies positive values of 𝑄. However positive values of 𝑄 not always imply 

rotation since there is not enough information about the second term in Equation 3.35. But what 

are the negative values of 𝑄? The negative values of 𝑄 can only come from the second term in 

Equation 3.35, −
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
, which signifies that 

𝜕𝑣

𝜕𝑥
 and 

𝜕𝑢

𝜕𝑦
 are both either positive or negative and the 

fluid does not experience rotation but straining. 

3.2.2 2D Finite difference form for P as a function of Q  

Equation 3.34 can be written in a central finite difference form around the cell (𝑖, 𝑗) as Equation 

3.38 considering a uniform grid with square cells of side 𝑎. Here, 𝑖 and 𝑗 are the integer numbers 
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associated with 𝑥 and 𝑦 to define the relative location of the cells (Note: In the upcoming 

equations, unless stated otherwise, 𝑖 and 𝑗 do not correspond to the indices used in indicial tensor 

notation).  

 
𝑃𝑖−1,𝑗 − 2𝑃𝑖 ,𝑗 + 𝑃𝑖+1,𝑗

𝑎2
+
𝑃𝑖 ,𝑗−1 − 2𝑃𝑖 ,𝑗 + 𝑃𝑖 ,𝑗+1

𝑎2
= 2𝑄𝑖 ,𝑗  (3.38) 

Equation 3.39 defines an expression for the pressure at a cell as 𝑃𝑖 ,𝑗 . 

 𝑃𝑖 ,𝑗 =
1

4
 𝑃𝑖−1,𝑗 + 𝑃𝑖+1,𝑗 + 𝑃𝑖 ,𝑗−1 + 𝑃𝑖 ,𝑗+1 − 2𝑄𝑖 ,𝑗𝑎

2  (3.39) 

The finite difference form shown in Equation 3.39 establishes the pressure per unit density at a 

cell, 𝑃𝑖 ,𝑗 , as the average of the neighboring pressures minus 
1

4
(2𝑄𝑖 ,𝑗𝑎

2).  In Section 3.2.1, 

rotation was associated with positive 𝑄. A clear consequence of this is that pressure decays from 

its average value where rotation is present. As the rotation becomes concentrated at a point, the 

velocities tend to zero and 𝑄 tends to its maximum value at that location. This explains how 

eddies are associated with zones of minimum pressure and positive 𝑄. 

Considering the relation between 𝑄 and 𝑄𝐹 given in Equation 1.19, Equation 3.39 matches with 

Equation 1.8 used by Fromm (Fromm, 1963). Here, eddies are associated with zones of 

minimum pressure and minimum 𝑄𝐹. 

3.2.3 2D Finite difference forms for Q  

The expressions for the components of 𝑄 are generated in order to get the finite difference forms 

for 𝑄. Once again a 2D uniform grid is used. The grid is formed by square cells, whose sides 

have a length equal to 𝑎.  The finite difference form for Equations 3.40 to 3.43 is forward 

difference and for equations 3.44 to 3.46 is central difference: 

 
𝜕𝑢

𝜕𝑥
→
∆𝑢

∆𝑥
=
𝑢𝑖+1,𝑗 − 𝑢𝑖 ,𝑗

𝑎
 (3.40) 

 
𝜕𝑢

𝜕𝑦
→
∆𝑢

∆𝑦
=
𝑢𝑖 ,𝑗+1 − 𝑢𝑖 ,𝑗

𝑎
 

(3.41) 
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𝜕𝑣

𝜕𝑥
→
∆𝑣

∆𝑥
=
𝑣𝑖+1,𝑗 − 𝑣𝑖 ,𝑗

𝑎
 (3.42) 

 
𝜕𝑣

𝜕𝑦
→
∆𝑣

∆𝑦
=
𝑣𝑖 ,𝑗+1 − 𝑣𝑖 ,𝑗

𝑎
 

(3.43) 

 
𝜕2𝑢2

𝜕𝑥2
→
∆ ∆𝑢2 

 ∆𝑥 2
=
𝑢𝑖−1,𝑗

2 − 2𝑢𝑖 ,𝑗
2 + 𝑢𝑖+1,𝑗

2

𝑎2
 (3.44) 

 
𝜕2𝑣2

𝜕𝑦2
→
∆ ∆𝑣2 

 ∆𝑦 2
=
𝑣𝑖 ,𝑗−1

2 − 2𝑣𝑖 ,𝑗
2 + 𝑣𝑖 ,𝑗+1

2

𝑎2
 (3.45) 

 𝜕2𝑢𝑣

𝜕𝑥𝜕𝑦
→

∆ ∆𝑢𝑣 

 ∆𝑥  ∆𝑦 
=

 𝑢𝑣 
𝑖+

1
2

,𝑗+
1
2
−  𝑢𝑣 

𝑖−
1
2

,𝑗+
1
2
−  𝑢𝑣 

𝑖+
1
2

,𝑗−
1
2

+  𝑢𝑣 
𝑖−

1
2

,𝑗−
1
2

𝑎2
 (3.46) 

𝑄, given by Equations 3.35, 3.36 and 3.37, can be written as 𝑄𝑖,𝑗 , where  𝑖, 𝑗 are the relative cell 

locations in the grid. Working on equation 3.35: 

 𝑄𝑖 ,𝑗 = −
1

2
 
𝑢𝑖+1,𝑗 − 𝑢𝑖 ,𝑗

𝑎
 

2

−  
𝑣𝑖+1,𝑗 − 𝑣𝑖 ,𝑗

𝑎
  
𝑢𝑖 ,𝑗+1 − 𝑢𝑖 ,𝑗

𝑎
 −

1

2
 
𝑣𝑖 ,𝑗+1 − 𝑣𝑖 ,𝑗

𝑎
 

2

 (3.47) 

 𝑄𝑖 ,𝑗 =
−1

𝑎2
 
 𝑢𝑖+1,𝑗 − 𝑢𝑖 ,𝑗  

2

2
+  𝑣𝑖+1,𝑗 − 𝑣𝑖 ,𝑗   𝑢𝑖 ,𝑗+1 − 𝑢𝑖 ,𝑗 +

 𝑣𝑖 ,𝑗+1 − 𝑣𝑖 ,𝑗 
2

2
  (3.48) 

Which yields Equation 3.49 which can be compared with Equation 3.35. 

 

𝑄𝑖 ,𝑗 =
−1

𝑎2
 
𝑢𝑖+1,𝑗

2

2
− 𝑢𝑖+1,𝑗𝑢𝑖 ,𝑗 +

𝑢𝑖 ,𝑗
2

2
+ 𝑢𝑖 ,𝑗+1𝑣𝑖+1,𝑗 − 𝑢𝑖 ,𝑗𝑣𝑖+1,𝑗

− 𝑢𝑖 ,𝑗+1𝑣𝑖 ,𝑗 + 𝑢𝑖 ,𝑗𝑣𝑖 ,𝑗 +
𝑣𝑖 ,𝑗+1

2

2
− 𝑣𝑖 ,𝑗+1𝑣𝑖 ,𝑗 +

𝑣𝑖 ,𝑗
2

2
  

(3.49) 

Similarly for Equation 3.36: 

 𝑄𝑖 ,𝑗 = − 
𝑣𝑖+1,𝑗 − 𝑣𝑖 ,𝑗

𝑎
  
𝑢𝑖 ,𝑗+1 − 𝑢𝑖 ,𝑗

𝑎
 +  

𝑢𝑖+1,𝑗 − 𝑢𝑖 ,𝑗

𝑎
  
𝑣𝑖 ,𝑗+1 − 𝑣𝑖 ,𝑗

𝑎
  

(3.50) 

 
𝑄𝑖,𝑗 =

−1

𝑎2
 𝑢𝑖 ,𝑗+1𝑣𝑖+1,𝑗 − 𝑢𝑖 ,𝑗+1𝑣𝑖 ,𝑗 − 𝑢𝑖 ,𝑗𝑣𝑖+1,𝑗 + 𝑢𝑖 ,𝑗𝑣𝑖 ,𝑗 − 𝑢𝑖+1,𝑗𝑣𝑖 ,𝑗+1

+ 𝑢𝑖 ,𝑗𝑣𝑖 ,𝑗+1 + 𝑢𝑖+1,𝑗𝑣𝑖 ,𝑗 − 𝑢𝑖 ,𝑗𝑣𝑖 ,𝑗   
(3.51) 
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Further simplification yields Equation 3.52 which corresponds to Equation 3.36. 

 𝑄𝑖 ,𝑗 =
−1

𝑎2
 𝑢𝑖 ,𝑗+1𝑣𝑖+1,𝑗 − 𝑢𝑖 ,𝑗+1𝑣𝑖 ,𝑗 − 𝑢𝑖 ,𝑗𝑣𝑖+1,𝑗 − 𝑢𝑖+1,𝑗𝑣𝑖 ,𝑗+1 + 𝑢𝑖 ,𝑗𝑣𝑖 ,𝑗+1 + 𝑢𝑖+1,𝑗𝑣𝑖 ,𝑗   (3.52) 

Similarly for equation 3.37: 

 

𝑄𝑖,𝑗 = −
1

2
 
𝑢𝑖−1,𝑗

2 − 2𝑢𝑖 ,𝑗
2 + 𝑢𝑖+1,𝑗

2

𝑎2
 −

1

2
 
𝑣𝑖 ,𝑗−1

2 − 2𝑣𝑖 ,𝑗
2 + 𝑣𝑖 ,𝑗+1

2

𝑎2
  

− 

 𝑢𝑣 
𝑖+

1
2

,𝑗+
1
2
−  𝑢𝑣 

𝑖−
1
2

,𝑗+
1
2
−  𝑢𝑣 

𝑖+
1
2

,𝑗−
1
2

+  𝑢𝑣 
𝑖−

1
2

,𝑗−
1
2

𝑎2
  

(3.53) 

Finally, the result that corresponds to Equation 3.37 is given by Equation 3.54: 

 

𝑄𝑖 ,𝑗 =
−1

𝑎2
 
𝑢𝑖−1,𝑗

2

2
− 𝑢𝑖 ,𝑗

2 +
𝑢𝑖+1,𝑗

2

2
+
𝑣𝑖 ,𝑗−1

2

2
− 𝑣𝑖 ,𝑗

2 +
𝑣𝑖 ,𝑗+1

2

2
+  𝑢𝑣 

𝑖+
1
2

,𝑗+
1
2

−  𝑢𝑣 
𝑖−

1
2

,𝑗+
1
2
−  𝑢𝑣 

𝑖+
1
2

,𝑗−
1
2

+  𝑢𝑣 
𝑖−

1
2

,𝑗−
1
2

  

(3.54) 

Section 4.6 shows the results using Equations 3.49, 3.52 and 3.54 in block 4 (the fifth block in 

the mesh, see Figure 2.2.) for the second invariant of the velocity gradient in Figures 4.53, 4.54 

and 4.55 respectively. Figure 4.52 is the second invariant from OpenFoam as a reference. 

Note again that Equation 1.9, used by Fromm, and equation 3.54 are equivalent considering the 

relation given by Equation 1.19. 

3.3.  Forces acting on the cylinder 

The purpose of this section is to derive mathematical expressions used to calculate drag and lift 

forces acting on the cylinder caused by pressure and viscous friction forces acting at the fluid 

cylinder interface. These equations are implemented in VerFlow-V.01. Results are presented in 

Section 4.1. 

The location around the cylinder is defined by an angle, +𝛼 counter clock wise positive, from 

the horizontal axis, see Figure 3.1. 
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3.3.1 Forces originating from pressure 

Forces originated by the pressure at a cell are shown in Fig. 3.1. The shaded area represents a 

finite but small cell. The normal vector 𝑛  points outward from the cylinder. Considering the 

thickness 𝑧 and the width, 𝑎, of the cell, the following equations describe the force and its 

orthogonal components: 

 

Figure 3.1 Forces originated by the pressure on the cylinder at a shaded cell 

 𝐹 𝑃𝑥 =  −𝑎𝑐𝑧𝑃 cos𝛼 𝑖  
(3.55) 

 𝐹 𝑃𝑦 =  −𝑎𝑐𝑧𝑃 sin𝛼 𝑗  
(3.56) 

 𝐹 𝑃 =  −𝑎𝑐𝑧𝑃𝑛  (3.57) 

3.3.2 Forces originating from viscous effect 

For arbitrary positive values of 𝑢 and 𝑣, their individual contributions to the tangential counter 

clockwise velocity 𝑣𝑒𝑙𝑡𝑔  are −𝑢𝑡𝑔  and 𝑣𝑡𝑔 . This is represented in the following figure and 

corresponding formulas: 
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Figure 3.2 Individual contributions to the tangential velocity of arbitrary positive 𝒖 and 𝒗.  

 𝑢𝑡𝑔 = 𝑢 sin𝛼 
(3.58) 

 𝑣𝑡𝑔 = 𝑣 cos𝛼 
(3.59) 

 𝑣𝑒𝑙𝑡𝑔 = −𝑢𝑡𝑔 + 𝑣𝑡𝑔  
(3.60) 

 𝑣𝑒𝑙𝑡𝑔 = −𝑢 sin𝛼 + 𝑣 cos𝛼 
(3.61) 

Note that for the Equation 3.61, 𝑣𝑒𝑙𝑡𝑔  is positive if it is counter clockwise. 

 𝑣𝑒𝑙    
𝑡𝑔 = 𝑣𝑒𝑙𝑡𝑔𝜃 1 

(3.62) 

Where 𝜃 1 is the tangential unit vector. 

Now going back to the Cartesian reference, for an arbitrary counter clockwise tangential 

velocity, the individual components are obtained as vectors. 

 𝑢 = −𝑣𝑒𝑙𝑡𝑔 sin𝛼 𝑖  
(3.63) 
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 𝑣 = 𝑣𝑒𝑙𝑡𝑔 cos𝛼 𝑗  
(3.64) 

 

Figure 3.3 Viscous force and Velocity components for an arbitrary counter clockwise 𝒗𝒆𝒍𝒕𝒈 

Close to the cylinder, the fluid moves parallel to the surface. That is, the fluid moves parallel to a 

tangent line, when flow exists near the cylinder. The tangential velocity has to change from zero 

(no-slip condition at the cylinder) to a known value at the center of the cell. 

The basic linear equation for the viscous force 𝐹𝑓𝑟  generated by the relative movement in the 𝑥 

axis of two parallel surfaces is given by Equation 3.65. 

 𝐹𝑓𝑟 =
𝜈𝑧Δ𝑥

Δ𝑦
Δ𝑣𝑒𝑙 

(3.65) 

where Δ𝑥 is the distance parallel to the surfaces, Δy is the distance between them, Δ𝑣𝑒𝑙 is the 

relative velocity, 𝑧 the thickness and 𝜈 is the kinematic viscosity. 

Equation 3.65 is applied to determine the viscous frictional force as a contribution for a given 

angle 𝛼. That force acts as a tangent force just on the boundary. Moving the location of the force 

to the center of the cylinder requires adding a moment. The viscous force is proportional to the 

change in velocities (𝑣𝑒𝑙𝑡𝑔 − 0), the length 𝑎𝑐  parallel to the force, the kinematic viscosity 𝜈 and 

the inverse of the perpendicular length 𝑏/2. This force has the same direction as the velocity 

𝑣𝑒𝑙    
𝑡𝑔 . 
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The individual viscous force and the individual tangential velocity for a cell are parallel. So, the 

viscous force vector and its components can be evaluated as follows: 

 𝐹 𝑉 =
𝜈𝑧𝑎𝑐
𝑏/2

𝑣𝑒𝑙    
𝑡𝑔  

(3.66) 

 𝐹 𝑉𝑥 = −𝐹𝑉 sin𝛼 𝑖  
(3.67) 

 𝐹 𝑉𝑦 = 𝐹𝑉 cos𝛼 𝑗   
(3.68) 

Or a direct calculation can be done from 𝑢  and 𝑣 : 

 𝐹 𝑉𝑥 =
𝜈𝑧𝑎𝑐
𝑏/2

𝑢  
(3.69) 

 𝐹 𝑉𝑦 =
𝜈𝑧𝑎𝑐
𝑏/2

𝑣  
(3.70) 

3.3.3 Total force 

The total effect of pressure forces can be obtained by summing all the contributions around the 

cylinder. 

 𝐹 𝑃𝑡𝑜𝑡𝑎𝑙 =  𝐹 𝑃𝑘
𝑘

  
(3.71) 

 𝐹 𝑃𝑡𝑜𝑡𝑎𝑙  𝑑𝑟𝑎𝑔
=  𝐹 𝑃𝑥𝑘

𝑘

 
(3.72) 

 𝐹 𝑃𝑡𝑜𝑡𝑎𝑙  𝑙𝑖𝑓𝑡
=  𝐹 𝑃𝑦𝑘

𝑘

  
(3.73) 

Again, the total drag and lift viscous forces can be obtained by summing all the contributions. 

 𝐹 𝑉𝑡𝑜𝑡𝑎𝑙 =  𝐹 𝑉𝑘
𝑘

  
(3.74) 
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 𝐹 𝑉𝑡𝑜𝑡𝑎𝑙  𝑑𝑟𝑎𝑔
=  𝐹 𝑉𝑥𝑘

𝑘

 
(3.75) 

 𝐹 𝑉𝑡𝑜𝑡𝑎𝑙  𝑙𝑖𝑓𝑡
=  𝐹 𝑉𝑦𝑘

𝑘

  
(3.76) 

The sum of both results gives the total forces. 

 𝐹 𝑡𝑜𝑡𝑎𝑙 = 𝐹 𝑃𝑡𝑜𝑡𝑎𝑙 + 𝐹 𝑉𝑡𝑜𝑡𝑎𝑙   
(3.77) 

 𝐹 𝑡𝑜𝑡𝑎𝑙  𝑑𝑟𝑎𝑔 = 𝐹 𝑃𝑡𝑜𝑡𝑎𝑙  𝑑𝑟𝑎𝑔
+ 𝐹 𝑉𝑡𝑜𝑡𝑎𝑙  𝑑𝑟𝑎𝑔

 
(3.78) 

 𝐹 𝑡𝑜𝑡𝑎𝑙  𝑙𝑖𝑓𝑡 = 𝐹 𝑃𝑡𝑜𝑡𝑎𝑙  𝑙𝑖𝑓𝑡
+ 𝐹 𝑉𝑡𝑜𝑡𝑎𝑙  𝑙𝑖𝑓𝑡

 
(3.79) 

Note that although the drag and lift forces are written in vector form, they are just pure horizontal 

and vertical forces. 

3.3.4 Moment on the cylinder 

The pressure forces are always pointing to the center, so these forces will not require an external 

balancing moment, but that is not what occurs with the viscous forces. Although the final result 

shows a relative small requirement, the moment acting on the cylinder due to viscous forces can 

be evaluated as follows: 

 𝑀 = 𝑟 × 𝐹 𝑉  (3.80) 

 𝑀 𝑡𝑜𝑡𝑎𝑙 =   𝑟 𝑘 × 𝐹 𝑉𝑘 

𝑘

 
(3.81) 

Alternate equations can be realized when considering that the radius is constant and always 

perpendicular to the tangent force (easily understood in the cylindrical coordinate system). 

 𝑀 = 𝑟𝐹 𝑉  (3.82) 
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 𝑀 𝑡𝑜𝑡𝑎𝑙 = 𝑟 𝐹 𝑉𝑘
𝑘

 
(3.83) 

The deviation from the center for the forces was found to be very small and was ignored.  

3.4.  Alternative equation for the pressure at a point 𝑷 

This section introduces Equation 3.84, which is the solution to Poisson equation (Equation 1.7) 

in 2D. The derivation of this equation, given in Appendix D, was contributed by Clinton Dancey. 

Equation 3.84 is used in this thesis to predict the drag and lift coefficients and the pressure at any 

point in the flow field domain. Components of these predicted results are calculated using 

VerFlow-V.01. This Section also includes the finite difference forms for two particular cases: (1) 

within a rectangular subdomain, or (2) anywhere in the entire domain, which is implemented in 

VerFlow-V.01 where the user can interactively select and explore different points and 

subdomains. Results are discussed in Sections 4.2, 4.3 and 4.4.  

Warsi presents an expression for the pressure at a point in volumetric space as a function of the 

velocity field, and the pressure and pressure gradient acting along surface boundaries enclosing 

that volumetric space, see equations 6.183 and 6.184 in his book (Warsi, 1993). 

The two dimensional version of Warsi’s three dimensional expression can be written as equation 

3.84 (see Appendix D for the derivation). 

 𝑃𝑃 = −
1

𝜋
 𝑄𝑄 ln  

1

𝑟
 𝑑𝐴

𝐴

+
1

2𝜋
 ln  

1

𝑟
 
𝜕𝑃

𝜕𝑛
𝑑𝐿

𝐿

−
1

2𝜋
 𝑃

𝜕ln  
1
𝑟 

𝜕𝑛
𝑑𝐿

𝐿

 (3.84) 

Where 𝑃𝑃  is the pressure per unit density at point 𝑃, the first term is a surface integral of all 𝑄 

points on area 𝐴 and the other terms are contour integrals enclosing 𝐴 on the boundaries, where 

 𝑛  is the outward normal along the boundary 𝐿. Figure 3.4 shows these definitions for (a) an 

arbitrary domain, (b) a rectangular domain, and (c) the entire domain. 
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Figure 3.4 Two dimensional domains defined (a) Arbitrary subdomain, (b) rectangular subdomain and (c) entire domain. 

Each term in Equation 3.84 is labeled, as shown below, and used in the discussion that follows in 

sections 3.4.1 and 3.4.2. 

 (𝑄) ≡ −
1

𝜋
 𝑄𝑄ln  

1

𝑟
 𝑑𝐴

𝐴

 
(3.84a) 

  𝐶𝐼1 ≡
1

2𝜋
 ln  

1

𝑟
 
𝜕𝑃

𝜕𝑛
𝑑𝐿

𝐿

 (3.84b) 

  𝐶𝐼2 ≡ −
1

2𝜋
 𝑃

𝜕ln  
1
𝑟
 

𝜕𝑛
𝑑𝐿

𝐿

 (3.84c) 

These same terms are calculated and displayed in VerFlow-V.01 for comparison both 

quantitatively and qualitatively as an image such that the researcher can interpret the contribution 

of each term. This interpretation extends to the dynamic case where animations are included in 

the discussion of results in section 4.0. 
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3.4.1 Finite difference forms for a rectangular domain 

 

Figure 3.5 Arbitrary point in a rectangular subdomain inside block 4. 

Figure 3.5 shows a rectangular subdomain, whose cells have orange boundaries. This subdomain 

is inside block 4, see Figure 2.2. All cells in the grid are squares with sides of length 𝑎. A local 

reference for the cells in the rectangular domain is defined from the bottom left corner where the 

first cell is  𝑖, 𝑗 =  1,1 . The last cell,  𝑛,𝑚 , is located at the top right corner. The second 

invariant of the velocity gradient 𝑄(𝑖 ,𝑗 ) is known at each cell (𝑖, 𝑗) with orange boundaries and 

the pressure 𝑃 is known at every cell with black background. Point 𝑃 (red) is selected inside the 

domain where the pressure 𝑃𝑃  is calculated. 

The finite difference form of the surface integral, labeled as (𝑄), in Equation 3.84a is given in 

Equation 3.85. 

 (𝑄) = −
1

𝜋
   𝑄(𝑖 ,𝑗 )𝑎

2ln 
1

𝑟(𝑖 ,𝑗 )
  

 𝑖 ,𝑗  ≠ 𝑖𝑃 ,𝑗𝑃  

𝑚

𝑗=1

𝑛

𝑖=1

 
(3.85) 

Note that Equation 3.85 requires  𝑖, 𝑗 ≠  𝑖𝑃 , 𝑗𝑃 . 
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Figure 3.6 Distance 𝒓(𝒊,𝒋) between points 𝑸 (where the second invariant is defined) and 𝑷 (where the pressure is calculated)  

The distance 𝑟(𝑖 ,𝑗 ) between cell (𝑖, 𝑗) and cell (𝑖𝑃 , 𝑗𝑃) is calculated using Equation 3.86 . 

 𝑟(𝑖 ,𝑗 ) =   𝑥𝑖 − 𝑥𝑃 2 +  𝑦𝑗 − 𝑦𝑃 
2
 (3.86) 

where 𝑥𝑖 , 𝑦𝑖 , 𝑥𝑃 = 𝑥𝑖𝑃  and  𝑦𝑃 = 𝑦𝑖𝑃  are the coordinates at the center of the cell using the 

reference location defined in Table 2.3. 

Finite difference forms of the first Contour Integral  𝐶𝐼  in Equation 3.84b are further 

decomposed and labeled as  𝐶𝐼1 𝐿,  𝐶𝐼1 𝑅,  𝐶𝐼1 𝑇 and  𝐶𝐼1 𝐵. Here 𝐿, 𝑅, 𝑇 and 𝐵 refer to Left, 

Right, Top and Bottom respectively.  This Contour Integral is defined as before and used in 

VerFlow-V.01 and in Section 4.2. 

The definitions given here for 𝑥𝑖  and 𝑦𝑗  are used in this section: 𝑥𝑖  is the 𝑥 coordinate of the i-th 

column and 𝑦𝑗 , the 𝑦 coordinate of the j-th row; 𝑖 is either 0, 1, 𝑖, 𝑖𝑃, 𝑛 or 𝑛 + 1 while 𝑗 is 0, 1, 𝑗, 

𝑗𝑃, 𝑚 or 𝑚 + 1 . 

 

Figure 3.7 Left boundary detail and definitions for  𝑪𝑰𝟏 𝑳 

The contour integral  𝐶𝐼1 𝐿 is calculated by Equation 3.87. 
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  𝐶𝐼1 𝐿 =
1

2𝜋
  𝑃 0,𝑗  − 𝑃 1,𝑗   ln 

1

𝑟𝑗
 

m

j=1

 
(3.87) 

 𝑟𝑗 =   
𝑥0 + 𝑥1

2
− 𝑥𝑃 

2

+  𝑦𝑗 − 𝑦𝑃 
2
 (3.88) 

where 𝑃 0,𝑗   and 𝑃 1,𝑗   are the pressures at cells  0, 𝑗  and  1, 𝑗 ; 𝑟𝑗  is the distance from cell 

(𝑖𝑃 , 𝑗𝑃) to the midpoint of cells  0, 𝑗  and  1, 𝑗 . 

 

Figure 3.8 Right boundary detail and definitions for  𝑪𝑰𝟏 𝑹 

Note that the finite difference distance for the normal direction is 𝑎, which cancels with the finite 

difference distance for the contour integral which is also 𝑎. This occurs at the four boundaries. 

Similarly, equations for the right boundary (see Figure 3.8) are written as: 

  𝐶𝐼1 𝑅 =
1

2𝜋
  𝑃 𝑛+1,𝑗  − 𝑃 𝑛 ,𝑗   ln 

1

𝑟𝑗
 

m

j=1

 
(3.89) 

 𝑟𝑗 =   
𝑥𝑛 + 𝑥𝑛+1

2
− 𝑥𝑃 

2

+  𝑦𝑗 − 𝑦𝑃 
2
 (3.90) 

Note that 𝑟𝑗 , in Equation 3.88 applies to Equation 3.87 while 𝑟𝑗  in Equation 3.90 applies to 

Equation 3.89. In Equations 3.89, 𝑃 𝑛+1,𝑗   and 𝑃 𝑛 ,𝑗   are the pressures outside and inside the 

subdomain along the right boundary at a vertical location defined by 𝑗. 
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Figure 3.9 Top boundary detail and definitions for  𝑪𝑰𝟏 𝑻 

For the top boundary (see Figure 3.9), Equations 3.91 and 3.92 define  𝐶𝐼1 𝑇 and 𝑟𝑖 . 

  𝐶𝐼1 𝑇 =
1

2𝜋
  𝑃 𝑖 ,𝑚+1 − 𝑃 𝑖 ,𝑚  ln  

1

𝑟𝑖
 

n

i=1

 
(3.91) 

 𝑟𝑖 =   𝑥𝑖 − 𝑥𝑃 2 +  
𝑦𝑚 + 𝑦𝑚+1

2
− 𝑦𝑃 

2

 (3.92) 

In equation 3.91, 𝑃 𝑖 ,𝑚+1  and 𝑃 𝑖 ,𝑚  are the pressures outside and inside the top boundary 

respectively at a horizontal location defined by 𝑖. 
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Figure 3.10 Bottom boundary detail and definitions for  𝑪𝑰𝟏 𝑩 

For the bottom boundary (see Figure 3.10), the contour integrals  𝐶𝐼1 𝐵 and 𝑟𝑖  are defined in 

Equations 3.91 and 3.92.  

  𝐶𝐼1 𝐵 =
1

2𝜋
  𝑃 𝑖 ,0 − 𝑃 𝑖 ,1  ln  

1

𝑟𝑖
 

n

i=1

 
(3.93) 

 𝑟𝑖 =   𝑥𝑖 − 𝑥𝑃 2 +  
𝑦0 + 𝑦1

2
− 𝑦𝑃 

2

 (3.94) 

For equation 3.93, 𝑃 𝑖 ,0  and 𝑃 𝑖 ,1  are the pressures outside and inside the bottom boundary 

respectively of the rectangular subdomain at a horizontal location established by 𝑖. 

Note that the distance 𝑟𝑖  in Equation 3.92 applies to Equation 3.91 while 𝑟𝑖  in Equation 3.94 

applies to Equation 3.93. 

Finite difference forms for the second contour integral in Equation 3.84 are labeled as  𝐶𝐼2 𝐿, 

 𝐶𝐼2 𝑅,  𝐶𝐼2 𝑇 and  𝐶𝐼2 𝐵 for each boundary. These contour integrals are also used in VerFlow-

V.01, where contributions of each component is envisioned in a qualitative sense and discussed 

in Section 4.2. 

 

Figure 3.11 Left boundary detail and definitions for  𝑪𝑰𝟐 𝑳 

The contour integral  𝐶𝐼2 𝐿 is evaluated by using Equations 3.95, 3.96 and 3.97 (see Figure 

3.11). 
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  𝐶𝐼2 𝐿 = −
1

2𝜋
 𝑃 0,𝑗   ln 

1

𝑟 0,𝑗  
 − ln  

1

𝑟 1,𝑗  
  

 1,𝑗  ≠ 𝑖𝑃 ,𝑗𝑃  

𝑚

𝑗=1

 
(3.95) 

 𝑟 0,𝑗  =   𝑥0 − 𝑥𝑃 2 +  𝑦𝑗 − 𝑦𝑃 
2
 (3.96) 

 𝑟 1,𝑗  =   𝑥1 − 𝑥𝑃 2 +  𝑦𝑗 − 𝑦𝑃 
2
 (3.97) 

Note again that the finite difference distance for the contour integral cancels with the finite 

difference distance for the normal, since both have the same magnitude 𝑎, which is the side of 

the square cells. 

There is an additional restriction  1, 𝑗 ≠  𝑖𝑃 , 𝑗𝑃  given in Equation 3.95. Other restrictions are 

 𝑛, 𝑗 ≠  𝑖𝑃 , 𝑗𝑃 ,  𝑖,𝑚 ≠  𝑖𝑃 , 𝑗𝑃  and  𝑖, 1 ≠  𝑖𝑃 , 𝑗𝑃  in Equations 3.98, 3.101 and 3.104 

respectively. All these restrictions limit either the location of point 𝑃 to be inside the white 

rectangle in Figure 3.5 or the calculations to avoid that specific location in the summation. 

Note also that 𝑟 0,𝑗   and 𝑟 1,𝑗   are the lengths from point 𝑃 to the center of the cells  0, 𝑗  and 

 1, 𝑗  respectively. It is not difficult to imagine that this contour integral will be more important 

when point 𝑃 is close to the wall. This criteria applies to the other walls as well. 

Similarly,  𝐶𝐼2 𝑅 is given by using Equations 3.98, 3.99 and 3.100 (see Figure 3.12). 

 

Figure 3.12 Right boundary detail and definitions for  𝑪𝑰𝟐 𝑹 
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.  𝐶𝐼2 𝑅 = −
1

2𝜋
 𝑃 𝑛+1,𝑗   ln 

1

𝑟 𝑛+1,𝑗  
 − ln 

1

𝑟 𝑛 ,𝑗  
  

 𝑛 ,𝑗  ≠ 𝑖𝑃 ,𝑗𝑃  

𝑚

𝑗=1

 
(3.98) 

 𝑟 𝑛+1,𝑗  =   𝑥𝑛+1 − 𝑥𝑃 2 +  𝑦𝑗 − 𝑦𝑃 
2
 (3.99) 

 𝑟 𝑛 ,𝑗  =   𝑥𝑛 − 𝑥𝑃 2 +  𝑦𝑗 − 𝑦𝑃 
2
 (3.100) 

 

Figure 3.13 Top boundary detail and definitions for  𝑪𝑰𝟐 𝑻 

The integral on the top boundary,  𝐶𝐼2 𝑇  is evaluated by Equations 3.101, 3.102 and 3.103 (see 

Figure 3.13). 

  𝐶𝐼2 𝑇 = −
1

2𝜋
 𝑃 𝑖 ,𝑚+1  ln 

1

𝑟 𝑖 ,𝑚+1 
 − ln 

1

𝑟 𝑖 ,𝑚 
  

 𝑖 ,𝑚 ≠ 𝑖𝑃 ,𝑗𝑃  

𝑛

𝑖=1

 
(3.101) 

 𝑟 𝑖 ,𝑚+1 =   𝑥𝑖 − 𝑥𝑃 2 +  𝑦𝑚+1 − 𝑦𝑃 2 (3.102) 

 𝑟 𝑖 ,𝑚 =   𝑥𝑖 − 𝑥𝑃 2 +  𝑦𝑚 − 𝑦𝑃 2 (3.103) 
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Figure 3.14 Bottom boundary detail and definitions for  𝑪𝑰𝟐 𝑩 

Finally, the contour integral  𝐶𝐼2 𝐵 is calculated by Equations 3.104, 3.105 and 3.106 (see 

Figure 3.14). 

  𝐶𝐼2 𝐵 = −
1

2𝜋
 𝑃 𝑖 ,0  ln 

1

𝑟 𝑖 ,0 
 − ln 

1

𝑟 𝑖 ,1 
  

 𝑖 ,1 ≠ 𝑖𝑃 ,𝑗𝑃  

𝑛

𝑖=1

 
(3.104) 

 𝑟 𝑖 ,0 =   𝑥𝑖 − 𝑥𝑃 2 +  𝑦0 − 𝑦𝑃 2 (3.105) 

 𝑟 𝑖 ,1 =   𝑥𝑖 − 𝑥𝑃 2 +  𝑦1 − 𝑦𝑃 2 (3.106) 

3.4.2 Finite difference forms for the entire domain 

The integration on the entire flow domain is the same as the integration on the rectangular 

subdomain studied in Section 3.4.1 where the only difference is that the cells around the cylinder 

are not squares and consequently the cell geometry must be more carefully considered. 

A portion of the calculations is already reviewed in Section 3.4.1 while some terms must be 

added to complete the integrations. The integrals from Equation 3.84 are again classified in as a 

surface integral (𝑄), and two contour integrals  𝐶𝐼1  and  𝐶𝐼2 . 
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The surface integral  𝑄 , is divided into five blocks:  𝑄 0,  𝑄 1,  𝑄 2,  𝑄 3, and  𝑄 4 

corresponding to each of the computational simulation grid blocks. The surface integral over the 

rectangular domain,  𝑄 4, is given by equation 3.107, similar to Equation 3.85 considering 

𝑛 = 238 and 𝑚 = 78 (since block 4 has 240 × 80 cells), which defines the biggest rectangular 

domain in block 4 according to the definitions given in Figure 3.5. 

  𝑄 4 = −
1

𝜋
    𝑄(𝑖 ,𝑗 )𝑎

2ln 
1

𝑟(𝑖 ,𝑗 )
  

 𝑥𝑖 ,𝑦𝑗  ≠ 𝑥𝑃 ,𝑦𝑃  

 

4

78

𝑗=1

238

𝑖=0

 
(3.107) 

Note the restriction of  𝑥𝑖 ,𝑦𝑗  ≠  𝑥𝑖𝑃 , 𝑦𝑗𝑃  is required on the summation, since point 𝑃, located 

in any block, requires a unique reference, see Table 2.3. The cell where point 𝑃 is defined is 

filtered out of the summation to avoid the problem. The subscript 𝑖 varies from 0 to 238 because 

block 4 is connected to block 1 at the left and no physical boundary exists there. The subscript 4 

indicates that all  𝑖, 𝑗  cells corresponds to a local reference in block 4, although  𝑥𝑖 ,𝑦𝑗   and 

 𝑥𝑃 ,𝑦𝑃  refer to the unique reference (see Table 2.3). 

For blocks 0 to 3, the integrals  𝑄 0,  𝑄 1,  𝑄 2 and  𝑄 3 are defined as equations 3.108, 3.109, 

3.110 and 3.111. 

  𝑄 0 = −
1

𝜋
    𝑄(𝑖 ,𝑗 )𝐴(𝑖 ,𝑗 )ln 

1

𝑟(𝑖 ,𝑗 )
  

 𝑥𝑖 ,𝑦𝑗  ≠ 𝑥𝑃 ,𝑦𝑃  

 

0

78

𝑗=1

79

𝑖=0

 
(3.108) 

  𝑄 1 = −
1

𝜋
    𝑄(𝑖 ,𝑗 )𝐴(𝑖 ,𝑗 )ln 

1

𝑟(𝑖 ,𝑗 )
  

 𝑥𝑖 ,𝑦𝑗  ≠ 𝑥𝑃 ,𝑦𝑃  

 

1

79

𝑗=1

79

𝑖=0

 
(3.109) 

  𝑄 2 = −
1

𝜋
    𝑄(𝑖 ,𝑗 )𝐴(𝑖 ,𝑗 )ln 

1

𝑟(𝑖 ,𝑗 )
  

 𝑥𝑖 ,𝑦𝑗  ≠ 𝑥𝑃 ,𝑦𝑃  

 

2

78

𝑗=1

79

𝑖=0

 
(3.110) 

  𝑄 3 = −
1

𝜋
    𝑄(𝑖 ,𝑗 )𝐴(𝑖 ,𝑗 )ln 

1

𝑟(𝑖 ,𝑗 )
  

 𝑥𝑖 ,𝑦𝑗  ≠ 𝑥𝑃 ,𝑦𝑃  

 

3

78

𝑗=1

79

𝑖=0

 
(3.111) 
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The subscripts 0, 1, 2, 3 indicate that all  𝑖, 𝑗  points refer to a local curvilinear reference in every 

block around the cylinder (see Figure 2.3) although  𝑥𝑖 ,𝑦𝑗   and  𝑥𝑃 ,𝑦𝑃  refer to the unique 

reference (see Table 2.3). 𝐴(𝑖 ,𝑗 ) is the area of the element located at cell  𝑖, 𝑗 . 𝑖 varies from 0 to 

79 since there are no physical boundaries along the diagonals which join two neighboring blocks. 

For blocks 0, 2 and 3, 𝑗 varies from 1 to 78 since 𝑗 = 0 corresponds to the cylinder boundary and 

𝑗 = 79 to the outer boundary, e.g. bottom wall for block 0, top wall for block 2 and inlet at the 

left for block 3. For block 1, 𝑗 varies from 1 to 79 because block 1 is connected to block 4 and no 

physical boundary exists there. 

The contour integrals  𝐶𝐼1  are given in equations 3.112 to 3.121 and again identified by a 

subindice indicating the corresponding block and a letter indicating the boundary:  𝐶𝐼1 0𝐶, 

 𝐶𝐼1 0𝐵,  𝐶𝐼1 1𝐶 ,  𝐶𝐼1 2𝐶,  𝐶𝐼1 2𝑇,  𝐶𝐼1 3𝐶,  𝐶𝐼1 3𝐿,  𝐶𝐼1 4𝑅,  𝐶𝐼1 4𝑇 and  𝐶𝐼1 4𝐵. Here 

𝐿,𝑅,𝑇,𝐵 and 𝐶 indicate left, right, top, bottom and cylinder respectively. Note that there is only 

one boundary in block 1, two boundaries in blocks 0, 2 and 3, and, three boundaries in block 4. 

The equations for block 4 are derived from Equations 3.89, 3.91 and 3.93. 

  𝐶𝐼1 4𝑅 =
1

2𝜋
   𝑃 239,𝑗  − 𝑃 238,𝑗   ln 

1

𝑟𝑗
  

4

78

j=1

 
(3.112) 

  𝐶𝐼1 4𝑇 =
1

2𝜋
   𝑃 𝑖 ,79 − 𝑃 𝑖 ,78  ln  

1

𝑟𝑖
  

4

238

i=0

 (3.113) 

  𝐶𝐼1 4𝐵 =
1

2𝜋
   𝑃 𝑖 ,0 − 𝑃 𝑖 ,1  ln  

1

𝑟𝑖
  

4

238

i=0

 
(3.114) 

  𝐶𝐼1 0𝐶 =
1

2𝜋
  

𝐷𝜋/320

0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78  
 𝑃 𝑖 ,79 − 𝑃 𝑖 ,78  ln  

1

𝑟𝑖
  

0

79

i=0

 
(3.115) 

  𝐶𝐼1 0𝐵 =
1

2𝜋
  

4𝐷/80

0.5 𝑏 𝑖 ,0 + 𝑏 𝑖 ,1  cos𝛽𝑖
 𝑃 𝑖 ,0 − 𝑃 𝑖 ,1  ln  

1

𝑟𝑖
  

0

79

i=0

 
(3.116) 
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  𝐶𝐼1 1𝐶 =
1

2𝜋
  

𝐷𝜋/320

0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78  
 𝑃 𝑖 ,79 − 𝑃 𝑖 ,78  ln  

1

𝑟𝑖
  

1

79

i=0

 
(3.117) 

  𝐶𝐼1 2𝐶 =
1

2𝜋
  

𝐷𝜋/320

0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78  
 𝑃 𝑖 ,79 − 𝑃 𝑖 ,78  ln  

1

𝑟𝑖
  

2

79

i=0

 
(3.118) 

  𝐶𝐼1 2𝑇 =
1

2𝜋
  

4𝐷/80

0.5 𝑏 𝑖 ,0 + 𝑏 𝑖 ,1  cos𝛽𝑖
 𝑃 𝑖 ,0 − 𝑃 𝑖 ,1  ln  

1

𝑟𝑖
  

2

79

i=0

 
(3.119) 

  𝐶𝐼1 3𝐶 =
1

2𝜋
  

𝐷𝜋/320

0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78  
 𝑃 𝑖 ,79 − 𝑃 𝑖 ,78  ln  

1

𝑟𝑖
  

3

79

i=0

 
(3.120) 

  𝐶𝐼1 3𝐿 =
1

2𝜋
  

4𝐷/80

0.5 𝑏 𝑖 ,0 + 𝑏 𝑖 ,1  cos𝛽𝑖
 𝑃 𝑖 ,0 − 𝑃 𝑖 ,1  ln  

1

𝑟𝑖
  

3

79

i=0

 
(3.121) 

In these equations some factors and constants are not simplified, since their meaning can be more 

easily understood. For example, 𝐷𝜋/320, is the finite difference length corresponding to 𝑑𝐿 at 

the cylinder boundary, 4𝐷/80 is the finite difference length corresponding to 𝑑𝐿 at the external 

contour, 0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78   is the finite difference radial length between the midpoints of cells 

 𝑖, 79  and  𝑖, 78  , and,  𝑏 𝑖 ,0 + 𝑏 𝑖 ,1   is the finite difference radial length between the 

midpoints of cells  𝑖, 0  and  𝑖, 1 . 

For these equations 𝑏 𝑖 ,𝑗   represents the mean radial length of cell  𝑖, 𝑗 . The geometric relation 

which defines the change of length in the radial direction in blocks 0, 1, 2 and 3 with 𝑓 = 0.25 

must be considered when calculating 𝑏 𝑖 ,𝑗   (see Section 2.3). 𝛽𝑖  is the angle between the radial 

direction and the normal to the boundary. This angle 𝛽𝑖  is considered for the external walls in 

blocks 0, 2 and 3 because for all other walls, including the cylinder, 𝛽𝑖  is 0.0 and cos𝛽𝑖  is 1.0. 

Ten contour integrals  𝐶𝐼2  are calculated from equations 3.122 to 3.131:  𝐶𝐼2 0𝐶 ,  𝐶𝐼2 0𝐵, 

 𝐶𝐼2 1𝐶,  𝐶𝐼2 2𝐶,  𝐶𝐼2 2𝑇,  𝐶𝐼2 3𝐶,  𝐶𝐼2 3𝐿,  𝐶𝐼2 4𝑅,  𝐶𝐼2 4𝑇 and  𝐶𝐼2 4𝐵. Again, subscripts 
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outside the parenthesis denote the corresponding blocks and letters denote the boundary segment. 

For block 4, these contour integrals are derived from 3.98, 3.101 and 3.104. 

 

 𝐶𝐼2 4𝑅 = −
1

2𝜋
  𝑃 239,𝑗   ln 

1

𝑟 239,𝑗  
 

78

𝑗=1

− ln 
1

𝑟 238,𝑗  
  

 𝑥239 ,𝑦𝑗  ≠ 𝑥𝑃 ,𝑦𝑃  

 

4

 
(3.122) 

 

 𝐶𝐼2 4𝑇 = −
1

2𝜋
  𝑃 𝑖 ,79  ln 

1

𝑟 𝑖 ,79 
 

238

𝑖=0

− ln 
1

𝑟 𝑖 ,78 
  

 𝑥𝑖 ,𝑦78 ≠ 𝑥𝑃 ,𝑦𝑃  

 

4

 
(3.123) 

  𝐶𝐼2 4𝐵 = −
1

2𝜋
  𝑃 𝑖 ,0  ln 

1

𝑟 𝑖 ,0 
 − ln 

1

𝑟 𝑖 ,1 
  

 𝑥𝑖 ,𝑦1 ≠ 𝑥𝑃 ,𝑦𝑃  

 

4

238

𝑖=0

 
(3.124) 

 

 𝐶𝐼2 0𝐶 = −
1

2𝜋
  

𝐷𝜋/320

0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78  
𝑃 𝑖 ,79  ln 

1

𝑟 𝑖 ,79 
 

79

𝑖=0

− ln 
1

𝑟 𝑖 ,78 
  

 𝑥𝑖 ,𝑦78  ≠ 𝑥𝑃 ,𝑦𝑃  

 

0

 
(3.125) 

 

 𝐶𝐼2 0𝐵 = −
1

2𝜋
  

4𝐷/80

0.5 𝑏 𝑖 ,0 + 𝑏 𝑖 ,1  cos𝛽𝑖
𝑃 𝑖 ,0  ln 

1

𝑟 𝑖 ,0 
 

79

𝑖=0

− ln 
1

𝑟 𝑖 ,1 
  

 𝑥𝑖 ,𝑦1 ≠ 𝑥𝑃 ,𝑦𝑃  

 

0

 

(3.126) 
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 𝐶𝐼2 1𝐶 = −
1

2𝜋
  

𝐷𝜋/320

0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78  
𝑃 𝑖 ,79  ln 

1

𝑟 𝑖 ,79 
 

79

𝑖=0

− ln 
1

𝑟 𝑖 ,78 
  

 𝑥𝑖 ,𝑦78 ≠ 𝑥𝑃 ,𝑦𝑃  

 

1

 

(3.127) 

 

 𝐶𝐼2 2𝐶 = −
1

2𝜋
  

𝐷𝜋/320

0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78  
𝑃 𝑖 ,79  ln 

1

𝑟 𝑖 ,79 
 

79

𝑖=0

− ln 
1

𝑟 𝑖 ,78 
  

 𝑥𝑖 ,𝑦78  ≠ 𝑥𝑃 ,𝑦𝑃  

 

2

 

(3.128) 

 

 𝐶𝐼2 2𝑇 = −
1

2𝜋
  

4𝐷/80

0.5 𝑏 𝑖 ,0 + 𝑏 𝑖 ,1  cos𝛽𝑖
𝑃 𝑖 ,0  ln 

1

𝑟 𝑖 ,0 
 

79

𝑖=0

− ln 
1

𝑟 𝑖 ,1 
  

 𝑥𝑖 ,𝑦1 ≠ 𝑥𝑃 ,𝑦𝑃  

 

2

 

(3.129) 

 

 𝐶𝐼2 3𝐶 = −
1

2𝜋
  

𝐷𝜋/320

0.5 𝑏 𝑖 ,79 + 𝑏 𝑖 ,78  
𝑃 𝑖 ,79  ln 

1

𝑟 𝑖 ,79 
 

79

𝑖=0

− ln 
1

𝑟 𝑖 ,78 
  

 𝑥𝑖 ,𝑦78  ≠ 𝑥𝑃 ,𝑦𝑃  

 

3

 

(3.130) 

 

 𝐶𝐼2 3𝐿 = −
1

2𝜋
  

4𝐷/80

0.5 𝑏 𝑖 ,0 + 𝑏 𝑖 ,1  cos𝛽𝑖
𝑃 𝑖 ,0  ln 

1

𝑟 𝑖 ,0 
 

79

𝑖=0

− ln 
1

𝑟 𝑖 ,1 
  

 𝑥𝑖 ,𝑦1 ≠ 𝑥𝑃 ,𝑦𝑃  

 

3

 

(3.131) 

In Equations 3.122 to 3.131, 𝑏 𝑖 ,𝑗   is the mean length in the radial direction, 𝑟 𝑖 ,𝑗   is the distance 

from point 𝑃, center of cell  𝑖𝑃 , 𝑗𝑃 , to the center point of the cell defined by the local reference 

 𝑖, 𝑗  in the block, which is specified by the global subindice in each equation. 𝑃 𝑖 ,𝑗   is the 

pressure at cell  𝑖, 𝑗  in the specific block. As noted before for the contour integrals  𝐶𝐼1  in this 
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section, 𝛽𝑖  is the angle between the radial direction and the normal and is applied to the external 

walls in blocks 0, 2 and 3. 

3.5.  Chapter nomenclature 

𝛼  angle which gives the location of a cylinder boundary cell 

𝛽𝑖   angle between the radial direction for cells  (𝑖, 𝑗) and the normal to external wall 

Δ  finite difference 

𝜋  constant = 3.14159265359  

𝜈  kinematic viscosity  

𝑎  side length of the square cells in the grid   

𝐴  area 

𝐴(𝑖 ,𝑗 )  area of the cell (𝑖, 𝑗) 

𝑎𝑐   side of the finite difference cells parallel to the cylinder boundary 

𝑏  side length of the finite difference cells perpendicular to the cylinder boundary 

𝐵  subindice meaning Bottom 

𝑏 𝑖 ,𝑗    side length of the finite difference cell  𝑖, 𝑗  in the radial direction 

 𝐶𝐼1   first term of contour integral in Equation 3.84 

 𝐶𝐼1 𝐿/𝑅/𝑇/𝐵/𝐶   first term of contour integral in Equation 3.84 (left, right, top, bottom or 

cylinder boundary) 

 𝐶𝐼1 𝑘𝐿/𝑘𝑅/𝑘𝑇/𝑘𝐵/𝑘𝐶   first term of contour integral in Equation 3.84 (left, right, top, bottom or 

cylinder boundary) in block 𝑘 

 𝐶𝐼2   second term of contour integral in Equation 3.84 
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 𝐶𝐼2 𝐿/𝑅/𝑇/𝐵/𝐶   second term of contour integral in Equation 3.84 (left, right, top, bottom or 

cylinder boundary) 

 𝐶𝐼2 𝑘𝐿/𝑘𝑅/𝑘𝑇/𝑘𝐵/𝑘𝐶   second term of contour integral in Equation 3.84 (left, right, top, bottom or 

cylinder boundary) in block 𝑘 

𝐷  diameter of the cylinder 

𝐹   force on the cylinder 

𝑓𝑖   body forces 𝑖 = 1,2,3 

𝑘 index for the summation 

𝐹𝑃  force on the cylinder due to pressure 

𝐹 𝑃  force on the cylinder due to pressure (vector) 

𝐹 𝑃𝑘  k-term of the force on the cylinder due to pressure (vector) 

𝐹 𝑃𝑡𝑜𝑡𝑎𝑙  total force on the cylinder due to pressure (vector) 

𝐹 𝑃𝑡𝑜𝑡𝑎𝑙  𝑑𝑟𝑎𝑔
 total drag force on the cylinder due to pressure (vector) 

𝐹 𝑃𝑡𝑜𝑡𝑎𝑙  𝑙𝑖𝑓𝑡
 total drag force on the cylinder due to pressure (vector) 

𝐹 𝑃𝑥  drag force on the cylinder due to pressure (vector) 

𝐹 𝑃𝑥𝑘
 k-term of the drag force on the cylinder due to pressure (vector) 

𝐹 𝑃𝑦  lift force on the cylinder due to pressure (vector) 

𝐹 𝑃𝑦𝑘
 k-term of the lift force on the cylinder due to pressure (vector) 

𝐹𝑉  force on the cylinder due to viscous effects 

𝐹 𝑉  force on the cylinder due to viscous effects (vector) 

𝐹 𝑉𝑘  k-term of the force on the cylinder due to viscous effects (vector) 
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𝐹 𝑉𝑡𝑜𝑡𝑎𝑙  total force on the cylinder due to viscous effects (vector) 

𝐹 𝑉𝑡𝑜𝑡𝑎𝑙  𝑑𝑟𝑎𝑔
 total drag force on the cylinder due to viscous effects (vector) 

𝐹 𝑉𝑡𝑜𝑡𝑎𝑙  𝑙𝑖𝑓𝑡
 total drag force on the cylinder due to viscous effects (vector) 

𝐹 𝑉𝑥  drag force on the cylinder due to viscous effects (vector) 

𝐹 𝑉𝑥𝑘
 k-term of the drag force on the cylinder due to viscous effects (vector) 

𝐹 𝑉𝑦  lift force on the cylinder due to viscous effects (vector) 

𝐹 𝑉𝑦𝑘
 k-term of the lift force on the cylinder due to viscous effects (vector) 

𝐹 𝑡𝑜𝑡𝑎𝑙  total force on the cylinder (vector) 

𝐹 𝑡𝑜𝑡𝑎𝑙  𝑑𝑟𝑎𝑔  total drag force on the cylinder (vector) 

𝐹 𝑡𝑜𝑡𝑎𝑙  𝑙𝑖𝑓𝑡  total drag force on the cylinder (vector) 

𝑖  cell number in the 𝑥 direction or its left wall  

𝑖  index 1, 2 or 3 

 𝑖𝑃 , 𝑗𝑃   cell corresponding to point 𝑃 

𝑖   unit horizontal vector 

𝑗  cell number in the 𝑦 direction or its bottom wall  

𝑗  index 1, 2 or 3  

𝑗   unit vertical vector 

𝐿  countour length or subindice meaning Left. 

m  number of cells inside the rectangular subdomain in the vertical direction 

𝑀  moment (vector) 
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𝑀 𝑡𝑜𝑡𝑎𝑙  total moment (vector) 

n  number of cells inside the rectangular subdomain in the horizontal direction 

𝑛   normal vector pointing outside the cylinder  

𝑃  pressure per unit density or point in an arbitrary domain 

𝑃(𝑖 ,𝑗 )  pressure per unit density at cell (i,j) 

𝑃𝑃   pressure per unit density at point 𝑃 

𝑄  second invariant of the velocity gradient or point in an arbitrary domain 

 (𝑄)  surface integral in Equation 3.84. 

 (𝑄)𝑘   surface integral in Equation 3.84 for block 𝑘 

𝑄𝑄  second invariant of the velocity gradient at point 𝑄 

𝑄(𝑖 ,𝑗 )  second invariant of the velocity gradient at cell (i,j) 

𝑟  cylinder radius or distance from point 𝑃 to point 𝑄 

𝑟   cylinder radius (vector) 

𝑅  subindice meaning right 

𝑟𝑖   distance from point 𝑃 to a point defined by a specific boundary and a given 𝑖 

𝑟(𝑖 ,𝑗 )  distance from point 𝑃 to cell (i, j) 

𝑟𝑗   distance from point 𝑃 to a point defined by a specific boundary and a given 𝑗 

𝑟 𝑘   k-term of the cylinder radius (vector) 

𝑡  time 

𝑇  subindice meaning Top 

𝑢  velocity in the 𝑥 direction at a point 
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𝑢𝑖   velocity 𝑖 = 1,2,3 

𝑢𝑡𝑔   tangential velocity 

𝑢 𝑡𝑔   tangential velocity vector 

𝑣  velocity in the 𝑦 direction at a point 

𝑥  axis 1 

𝑥𝑖   axes 𝑖 = 1,2,3 or horizontal location of cell (i, j) 

𝑥𝑃   = 𝑥𝑖𝑃  , horizontal location of cell (𝑖𝑃 , 𝑗𝑃) 

𝑦  axis 2 

𝑦𝑖   = 𝑦𝑖𝑃  , vertical location of cell (i, j) 

𝑦𝑃   vertical location of cell (𝑖𝑃 , 𝑗𝑃) 

𝑧  thickness 
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Chapter 4 .  Results and Discussion 

A customized graphical computer program, VerFlow-V.01, was developed here for both 

quantitative and qualitative analysis of periodic laminar flow around a 2D cylinder. In VerFlow-

V.01 the equations defined in Chapter 3 are applied to the OpenFoam simulation data from 

Chapter 2. 

Unless a different velocity is specified, discussion of results here focus on the problem where the 

velocity at the inlet is 0.012 [𝑚/𝑠] (Re=67.4). 

4.1.  Forces on the cylinder 

Various drag coefficients, for flow around a circular cylinder are shown in figure 1.2. Here this 

figure is used for a qualitative description only, where the coefficients of drag are plotted using a 

logarithmic scale along the y-axis. The figure in Chapter 1 (Feynman, Leighton, & Sands, 1964), 

gives us a first reference point with drag coefficient 1.54 at the Reynolds number of 67, i.e. the 

blue line in Figure 4.1. A second source, (Warsi, 1993) is shown as a red line, point (67,1.95), in 

Figure 4.1. 

 

Figure 4.1 Drag coefficient of a cylinder for Re=67 
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Included in Figure 4.1 are our results (67, 2.24) which are obtained by numerical integration of 

pressure contributions and viscous forces acting on the cylinder, see equations 1.20, 3.55, 3.68, 

3.71, 3.74, 3.77. 

The difference in the coefficients of drag, compared in Figure 4.1, is believed to be the result of 

the flow constriction generated by the top and bottom walls. This constriction also affects the 

shedding frequency and consequently the Strouhal number. 

Equation 1.25 is used to calculate the drag coefficient as a function of time, based on integrating 

dynamically horizontal (streamwise) forces acting on the cylinder boundary. A similar 

expression applies for the lift coefficient by integration of vertical forces. This makes sense since 

the goal is to observe how drag and lift varies with time, although the expected mean value for 

the lift is zero. For this reason animations are included in this discussion. 

Figure 4.2 and its corresponding Animation 4.1 shows the dynamic relationship between 

components of drag and lift forces and forces acting on the cylinder boundary. All forces are 

drawn concentric to the center of the cylinder. The pressure force, drawn in orange, is the result 

of the integration of the pressure along the cylinder boundary. The pressure at each point on the 

cylinder surface is also represented as acting along radial lines, in cyan. Positive pressure 

coefficients point away from the yellow cylinder boundary. The blue lines are viscous forces. 

The black line represents the total force acting on the cylinder. The streamwise velocity field, 𝑢𝑥 , 

is also shown, using the blue and green color legend shown at the left. The maximum 

dimensionless force in a complete cycle is 2.29. Note that forces are calculated in dimensionless 

form, i.e. the drag coefficient, 𝐶𝐷, and lift coefficient, 𝐶𝐿. 

 

Figure 4.2 Pressure and viscous forces on the cylinder 
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Animation 4.1 Forces on the cylinder 

Animation 4.1 reveals the relative changes of lift and drag force components in a dynamic sense 

not seen in Figure 4.2. The dynamic interaction of these forces with the 𝑢𝑥  velocity is especially 

insightful in a qualitative sense. A quantitative discussion on dynamic pressure and viscous force 

components is given in Section 4.1.3. 

4.1.1 General discussion on drag forces 

The total dimensionless drag varies from 2.246 to 2.258. The drag resulting from viscous forces 

can essentially be considered constant since its variation is very small, from 0.581 to 0.583  

which accounts for  25.8% of the drag at this particular Reynolds number. The pressure 

generates the majority of the drag at 74.2%. In the simulation, the cylinder boundary is divided 

into four arcs, 0 to 3, which correspond to the grid blocks 0 to 3 in Figure 2.2. The pressure drag 

contributions are 52.3% from arc 3 (left), 41.7% from arc 1 (right). The difference to complete 

100%, is 6%, which is due to the pressure from arcs 0 (bottom) and 2 (top). 

Viscous forces from arc 0 (bottom) and arc 2 (top) contribute equally and sum to 77.9% of the 

total viscous drag. 23.9% is generated at arc 3 (left). Arc 1 (right) actually has a negative effect 

of -1.7% on the viscous drag, which is the result of “back flow” behind the cylinder. 

These results have a logical meaning considering that the pressure acts perpendicularly to the 

walls, and the viscous forces interact tangentially. 

4.1.2 General discussion on lift forces 

The variation in lift forces is the result of pressure and tangential viscous forces acting on the 

cylinder boundary. The pressure and the tangential velocity changes periodically in such a way 

that both affect the total lift. 

A4.1_Forces_FS.mov
A4.1_Forces_FS.mov
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The maximum dimensionless lift is 0.50 where 13.3% is due to viscous forces while 86.7% is 

due to pressure forces. The lift varies in time from positive to negative and positive again as the 

flow continues to develop in repeating cycles. The mean lift is zero due to symmetry. 

4.1.3 Pressure and viscous forces in one cycle 

 

Figure 4.3 Times of maximum forces 𝟎.𝟑 𝒔  top left, 𝟎.𝟓 𝒔   top right, 𝟏.𝟑 𝒔  bottom left and 𝟏.𝟓 𝒔  bottom right 

A complete cycle is envisioned within 39 frames for the problem where 𝑢∞ = 0.012[𝑚/𝑠] 

(Re=67.4). To get this result, the same procedure described in Section 2.7.5, is applied. The 

period is 0.2 𝑠  10  39 /40 = 1.95[𝑠] and the frequency of the shedding oscillation is 

0.513[𝐻𝑧]. 

The detail of how the pressure and viscous forces appear when at their respective maximum 

values in the cycle is shown in Figure 4.3. The time order of these graphs is top-left (0.3[s]), top-

right (0.5[s]), bottom-left (1.3[s]) and bottom-right (1.5[s]). The figures on the left side 

correspond to maximum pressure forces and the figures on the right side to maximum viscous 

forces. 

The maximum values from both sources do not occur simultaneously. The maximum viscous 

forces are delayed with respect to the maximum pressure forces by 0.2 𝒔  (37° of the complete 

cycle). This can be seen in Animation 4.1.  
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Since the pressure force is considerably larger than the viscous force and the viscous force is 

delayed with respect to the pressure force, the total force (vectorial sum of both forces) does not 

reach the maximum angle reached by the pressure force. 

     

Figure 4.4 Drag forces on the cylinder along one cycle 

 

Figure 4.5 Amplification (100 times) of drag forces shown on Figure 4.4 for one complete cycle 



87 
 

In figure 4.4 we confirm what was already stated on 4.1.1 that the drag forces are fairly constant 

during the entire cycle. Also, viscous forces generate 25.8% of the total drag. 

The scale of the vertical axis in figure 4.4 is amplified by 100, and the result is plotted in Figure 

4.5. Our results are consistent with Osama Marzouk’s previous result where they observed small 

variations in the drag with a frequency twice the shedding frequency (Marzouk, 2009).  

For the following analysis, the increased time resolution data is not used but rather the results are 

determined from the original “data” over several cycles.  

 

Figure 4.6 Drag (top) and lift (bottom) oscillations for Fast Fourier Transform analysis (see Figure 4.7) 

 

Figure 4.7 Drag and lift oscillations frequency spectrums 
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Figure 4.7 shows the frequency spectrum resulting from 128 points of the original drag and lift 

data obtained using VerFlow_V.01 and shown in Figure 4.6. The variations in the drag 

coefficient from its mean value have two main frequencies: one coincides with the shedding 

frequency and the other with twice the shedding frequency. The lift oscillates with the 

characteristic shedding frequency. 

A low frequency pattern can be detected in Figure 4.6. This low frequency is approximately 

0.12[Hz] or one fourth of the shedding frequency, and is not identified in the frequency analysis 

in Figure 4.7 due to the limited number of terms (128 points).  

The discussion below returns to the data set associated with the increased time resolution (1 

cycle in 39 frames).  

Figure 4.8 shows the lift components for the time where the maximum lift forces occur. This 

graph has the same arbitrary reference used in figure 4.3. 

 

Figure 4.8 Lift forces on the cylinder along one cycle 

The delay of maximum viscous forces results in the delay of the total lift with respect to pressure 

forces. The approximate delays are 0.175 𝒔  (9.0% of the period or 32.3° of the shedding 

oscillation) for the maximum viscous forces and 0.025 𝒔  (1.3% of the period or a phase lag of 

4.6° lag) for the total lift. This difference can also be observed qualitatively in Animation 4.1. 
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4.1.4 Cyclic pressure and viscous forces decomposed into blocks 

Grid blocks 0, 1, 2 and 3 defined in Section 2.3 are used here to calculate pressure and viscous 

force contributions to lift and drag coefficients along arcs corresponding to blocks 0 to 3. 

 

Figure 4.9 Contributions to drag (left) and lift (right) coefficients from arc 0 (in one cycle) 

Cyclic results from arc 0 can be seen in Figure 4.9, drag coefficients at the left and lift 

coefficients at the right. From this arc we find that the pressure contribution to the drag forces 

cycles from 13.0% to 23.0%. The remaining 77.0% to 67% is associated with the viscous forces. 

The pressure contribution to the lift varies from 90.0% to 92.7%. Viscous forces act with only a 

small contribution to the total lift at arc 0. The variation in time, shown at the top right corner in 

Figure 4.9, is very small where the scale is increased 40 times. Consequently viscous forces 

contribute only 7.3% to 10.0% of the total lift. Lift contributions from both sources are negative 

values along this arc. 

Figure 4.10 shows the contributions to the drag (left) and lift (right) from arc 1, which is behind 

the cylinder. The drag, that originates from viscous forces, is negative, negligible and oscillates 

at double the frequency compared to figure 4.9. These negligible values oscillate around -0.01 

and are expected to actually have a mean value of zero because of symmetry. This is an 

acceptable error when considering various numeric calculations including the OpenFoam 

simulation “data”.  
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Cyclic results for arc 1 reveal 100% of the drag is due to pressure forces. The doubling of the 

frequency due to pressure dominates, since the other viscous effects are only visible when the 

scale on the vertical axis is increased by 25, see the bottom left corner of Figure 4.10. Although 

the lift for arc 1 has small values when compared with the lift from other arcs, it has significant 

influence from both pressure and viscous forces. 

 

Figure 4.10 Contributions to drag (left) and lift (right) coefficients from arc 1 (in one cycle) 

In Figure 4.11, we see the cyclic drag and lift results for arc 2. As expected the drag in this graph 

has the same maximum, minimum and mean values compared to Figure 4.09, because of the 

symmetry. The cyclic drag effects from arcs 0 and 2 are displaced a half cycle from each other. 

 

Figure 4.11 Contributions to drag (left) and lift (right) coefficients from arc 2 (in one cycle) 
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The sum of lift coefficients from arc 2 and arc 0 increases the individual oscillatory effect 

although the mean value goes to zero. The lift from viscous effects on arc 2 is again observed to 

have negligible oscillatory variations with the shedding frequency, see the bottom right corner in 

Figure 4.11 where the vertical scale is increased 40 times. 

 

Figure 4.12 Contributions to drag (left) and lift (right) coefficients from arc 3 (in one cycle) 

 

Figure 4.13 Drag (left) and lift (right) coefficient contributions from arcs 0, 1, 2 and 3 due to pressure (in one cycle) 

The arc that encounters the flow directly is arc 3 where we observe the cyclic drag (left) and lift 

(right) contributions in Figure 4.12. A constant value of drag coefficient, 0.139, is due to the 

viscous effect. Again the pressure generates a doubled frequency, which was already pointed out 

for arc 1. The sum of arcs 1 and 3 also have a cancelling effect since the oscillation for arc 3 is 

inverted with respect to the same oscillation observed for arc 1. In arc 3 the lift is due to 
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significant contributions from pressure and viscous forces. The total lift coefficient varies from -

0.0627 to 0.0625. These are reasonable values as we expected these same magnitudes because of 

the symmetry. 

Figure 4.13 reveals a global picture of drag and lift coefficient components due to pressure from 

each arc. The most important contributions to the drag come from arc 3 and 1 (in that order), 

similarly but for the lift, the results from arcs 0 and 2 are the most important. The effects of both 

individual oscillations are summed, which increases the amplitude of the cyclic lift due to 

pressure. 

In Figure 4.14 we show that the total drag at the left is the sum of the drag components from arc 

3 and arc 1 and the sum of the drag components from arc 0 and arc 2, where the vertical scale is 

equally spaced for comparison purposes. However these are only partial results due to pressure. 

 

Figure 4.14 Pressure drag coefficients in one cycle: Total (left), sum arcs 3 and 1 (center), and, sum arcs 0 and 2 (right) 

Arcs 1 and 3 are observed to not only contribute 93.9% of the total pressure drag magnitude, but 

are also responsible for the final oscillatory variations. The total pressure drag variations result 

from the oscillatory behavior from arcs 1 and 3, which is attenuated by arcs 0 and 2 by 9.6%. 

 

Figure 4.15 Drag (left) and lift (right) coefficient contributions from arcs 0, 1, 2 and 3 due to viscous flow (in one cycle) 
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In Figure 4.15 drag and lift coefficients from each arc are compared. The drag due to viscous 

forces is negligible from arc 0, is small from arc 3 (23%), and shows an oscillation from arcs 0 

and 2 (77%). The coefficient of lift due to viscous forces is in general small and oscillates from -

0.064 and 0.064. 

 

Figure 4.16 Viscous drag coefficients in one cycle: Total (left), sum arcs 3 and 1 (center), and, sum arcs 0 and 2 (right) 

Figure 4.16 shows the viscous effect by combining arc 1 with arc 3 and arc 0 with arc 2. The 

same amplified vertical scale in Figure 4.14 is used in Figure 4.16 for comparison. 

 

Figure 4.17 Total drag coefficient in one cycle 

Figure 4.17 shows again that the total drag coefficient is the sum of both pressure and viscous 

forces, using the same scale amplification as that used in Figures 4.16 and 4.14. When Figure 

4.17 is compared with Figure 4.14 the oscillation for the total drag precisely coincides in 

amplitude and phase with the oscillation for the combined action of pressure drag from arcs 3 

and 1. The remaining oscillations cancel each other. Will this result hold for other Reynolds 

numbers? Or is this result just a coincidence?  

One additional flow example is considered for comparison with an inlet velocity 𝑢∞ =

0.01[𝑐𝑚/𝑠] (Re=56.2). For this simulation, OpenFoam “data” is extracted and results analyzed 

using VerFlow-V.01. Figure 4.18 shows again a good prediction of the oscillation. We realize 

that although some noise exists, viscous forces again affect the oscillation in the total drag, but 
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the general picture is similar to the pressure drag sum from arcs 1 and 3. Both maintain the same 

frequency and the same average amplitude, shown in the shaded regions. 

 

Figure 4.18 Total drag (left) and pressure drag sum from arcs 1 and 3 (right) for 𝒖𝒙 = 𝟎.𝟎𝟏[𝒄𝒎/𝒔] in one cycle   

4.2.  Prediction of the pressure at a point 

In this section the horizontal (streamwise) velocity at the inlet is 𝑢∞ = 0.012[𝑚/𝑠] (Re=67.4). 

The calculations shown here and in Section 4.3, are based on Equation 3.84. The objective of this 

section is to understand how each term in Equation 3.84 contributes to pressure at any arbitrary 

point, 𝑃𝑃 , using analytic and graphic models. 
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Each term in this equation is used by VerFlow-V.01 to interpret OpenFoam “data” both 

quantitatively as a calculation and qualitatively as a graphical image. For simplicity each term in 

Equation 4.1 is assigned a label that is used in the VerFlow-V.01 program interface and defined 

as follows: 
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See also Equations 3.85 to 3.131 in Sections 3.4.1 and 3.4.2 for more detail. 



95 
 

The surface integral is labeled as (𝑄) in equation 4.2 and assigned to the Integration tab in the 

VerFlow-V.01 program interface in Figure 4.19 (see also Figure 4.21 where interface is 

enlarged), where different values are compared under the Integration tab, and (Q) is a red 

horizontal line. The value of (Q) is written next to the title “Surface integral (Q) (red)”, again see 

Figure 4.19 and 4.21. 

The contour integrals  𝐶𝐼1  and  𝐶𝐼2  have different values for each part of the boundary. The 

results are written in a table below the title “contour integral 1 (black) 2 (gray)”. In the image 

portion of Figure 4.19, these integrals are drawn in black or gray under the correspondent 

boundary identifier: left (L), right (R), top (T), bottom (B) and cylinder (Cy), see also Figure 

4.21 for this interface layout. 

The reference value for the pressure (P) at a point comes directly from the OpenFoam pressure 

file. This reference value is presented as a blue horizontal line below (P) under the Integration 

tab. A light orange horizontal long line represents the zero pressure. The predicted value for the 

pressure is shown also in blue below the (+) label to the right of label (P). 

The solution for the pressure at any arbitrary point requires a domain where the second invariant 

of the velocity gradient 𝑄 is known over the whole region and where the pressure and pressure 

gradients are also known along the boundaries. 

We have solved the problem for two different domains. The first is a rectangular domain chosen 

arbitrarily inside the block 4 (the channel to the right of the cylinder). The second is the entire 

flow domain. 

The color legend at the left in Figure 4.19 can be used also for Figure 4.20 and 4.22. The same 

time, 0.4[𝑠], is used for all these figures. The primary variable labeled (V.) represents in the 

figure the second invariant of the velocity gradient, 𝑄, and because of the transparency setting 

effects, the contour lines of this variable appears orange or brown. In this same figure the 

overlapped variable (O.V.) is the pressure per unit density, 𝑃, where contour lines are drawn with 

a black color. 
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4.2.2 Rectangular domains 

In order to determine the pressure at an arbitrary point using Equation 4.1, a point within the 

rectangular domain must be selected. The rectangular domain can itself be a subdomain limited 

to a region within block 4. See Section 3.4.1 for definitions and equations. With VerFlow-V.01 

the user can select any arbitrary rectangular region downstream of the cylinder for analysis in 

block 4. 

The example here shows an instantaneous frame in Figure 4.19. An animation is linked to the 

small figure below and to the Animation 4.2 title. 

White, partially transparent lines, inside the rectangle, connect the selected point to each point on 

the boundary. 

 

Figure 4.19 Pressure predicted at an arbitrary point in a rectangular domain at time 𝟎.𝟒(𝒔)  

 

Animation 4.2 Pressure at a point on a rectangular domain 

For this particular example the reference pressure is -0.375 (calculated by the OpenFoam code) 

and the predicted pressure from the Poisson integration in VerFlow-V.01 is −0.366. These 

values differ by 0.009 (2.4%). Note also that the contributions from the right and top boundaries 

are negligible. The contour integral (𝐶𝐼2) at the left boundary has an important contribution 

predicting the pressure at this particular time, rectangle, and point. The two contour integrals at 

the bottom are not negligible by themselves, but their combined action is not as significant as 

A4.2_Rect_FS.mov
A4.2_Rect_FS.mov
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other terms, because they have similar magnitudes but opposite signs. The surface integral yields 

the highest contribution. 

In summary for this example, the pressure is the result of the contributions from the surface 

integral and from the contour integral (𝐶𝐼2) at the left boundary. 

For the largest rectangle permitted by VerFlow-V.01, e.g. the entire block 4, and with the same 

arbitrary point and time, a new value is predicted for the pressure. See Figures 4.20 and 4.21. 

 

Figure 4.20 Arbitrary point in the biggest rectangle at block 4, see color legend in Figure 4.19. 

Again the pressure has contributions both from the second invariant 𝑄 and from the contour 

integral 𝐶𝐼2 at the left boundary. This is expected for a gross calculation, all contributions from 

other boundaries can be ignored. This is possible because at these boundaries, right, top and 

bottom, the pressure gradient has small magnitudes in the normal direction and for integral 𝐶𝐼2 

the point is far from the boundaries. 

 

Figure 4.21 Pressure at an arbitrary point for the biggest rectangle in block 4. 
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4.2.3 Entire domain 

Once again the same arbitrary point is selected, but now the entire domain is included, blocks 0 

to 4. See Section 3.4.2 for definitions and equations. The results can be seen in Figures 4.22 and 

4.23 and in Animation 4.3. 

 

Figure 4.22 Arbitrary point in the entire domain, see color legend in Figure 4.19. 

 

Figure 4.23 Pressure at an arbitrary point for the entire domain 

 

Animation 4.3 Pressure at a point on the entire domain 

Although the contributions from some boundaries are small, when acting together the result 

becomes important and the prediction of the pressure, 𝑃𝑃 , is very close to the reference value 

obtained from the OpenFoam simulation. In this case the absolute difference is 0.005. However, 

A4.3_EntireDomain_FS.mov
A4.3_EntireDomain_FS.mov
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again the most significant contribution, 77%, comes from the surface integral 

 −
1

𝜋
 𝑄𝑄ln  

1

𝑟
 𝑑𝐴

𝐴
 , equation 4.2. 

For this case, the contour integral at the cylinder boundary contributes more than the other 

boundaries in the prediction of the pressure. 

The Animation 4.3 shows how all variables contribute to the pressure changes as the flow moves 

in a repeated cycle. 

Predicted pressures, 𝑃𝑃 , when choosing different points at different times, and selecting different 

domains, are similar to the pressure per unit density from the OpenFoam simulation, i.e. the 

difference between both is always less than 6% of the maximum pressure and in most of the 

cases less than 1% of the maximum pressure. The quality of our results is given by the 

correspondence between the two blue lines, one representing the pressure from OpenFoam and 

the other the predicted pressure, 𝑃𝑃 . The difference between the two is also given numerically 

(quantitatively). Both pressures are in good agreement for the large number of tests studied here. 

4.2.4 Filtered domain: envisioning OpenFoam “data” qualitatively 

OpenFoam “data” is filtered for two variables shown in the color legend bars of VerFlow-V.01, 

see the left side of Figure 4.19. The first variable has a title “V.” and the second “O.V.” which 

signifies an “Overlapped Variable”. Although both variables, “V.” and “O.V.”, support color 

legend filters, only the first variable selects the sub-domain. This sub-domain intersection with 

the domain (rectangular subdomain or entire region) gives the region in which the surface 

integral given in Equation 4.2 is calculated. 

VerFlow-V.01 allows the user to filter the horizontal and vertical velocities, velocity magnitude, 

pressure, vorticity, vorticity magnitude, second invariant of the velocity gradient and even drag 

and lift. The filter is accomplished by visually selecting minimum and maximum limits on the 

color legend bar. 

The combination of the capabilities of VerFlow-V.01 results in an extremely useful package that 

can be customized interactively as the user interprets multiparameter results. 
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In the following example the first variable, “V.”, is selected as the second invariant of the 

velocity gradient. A closer view of the qualitative and quantitative results of P, +, Q, L, R,

T and B in Figure 4.19 is presented in Figure 4.24 where the color legend bar plays a role in the 

selection of a filtered region in which the surface integral is calculated. In Figure 4.24, the green-

blue color legend bar, “V.” 𝑄, acts as a filtered variable, which appears at the left with two 

vertical red lines indicating all data are visible and no filtering exists. The overlapped variable, 

“O.V.” pressure 𝑃, remains as shown in Figure 4.19 where the yellow-red color legend bar is not 

used. The colors in the visible region of the flow are the result of the combination of both 

variables, “V.” and “O.V.”, with transparency effects. The shaded region enclosed in the 

rectangle is the intersected area between the region inside the rectangle and all visible data that 

was not filtered. In this example the quantitative results at the right show an important 

contribution of the pressure at the point in red, from the surface integral (Q) given by Equation 

4.2. In this fashion the user can customize variables of interest and qualitatively evaluate the 

OpenFoam data with respect to both variables, “V.” and “O.V.”, simultaneously. 

 

Figure 4.24  Pressure at a point for non-filtered data (rectangle domain) 

Recall that (P) is the reference pressure at the selected point from OpenFoam, (+) is the sum of 

all contributions, 𝑃𝑃 , and (Q) is the surface integral in the intersected domain where (L) , (R), (T) 

and (B) are the contour integrals at the left, right, top and bottom sides respectively.  

Here the filter shown in the green-blue color legend bar in Figure 4.25 defines new limits where 

the variable is visible. Although a smaller region in the color legend bar is selected, the visible 

region is reduced in the clear zones only (see Figure 4.25). The reference line (zero), inside the 

selected region, reveals that the magnitude of the variable in the visible region is close to zero. 

The surface integral (Q) given by Equation 4.2 is realized in the intersected shaded region. Note 
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that the filter only affects the terms (Q) and (+) in the right part of Figures 4.24 and 4.25. The 

magnitude of this integral is also observed to drop drastically (from 0.280 to 0.062). 

 

Figure 4.25 Pressure at a point for filtered data (rectangle domain) 

It would seem reasonable that the regions with small values in the second invariant of the 

velocity gradient would not contribute to the prediction of pressure, however this assumption is 

incorrect.  

 

Figure 4.26 Pressure at a point for filtered data (entire domain) 

 

Figure 4.27 Pressure at a point for filtered data (entire domain) - results 
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Calculations at the same point are shown in Figure 4.27 but for the entire domain shown in 

Figure 4.26 and using the same color legend filter as in Figure 4.25. No shaded region is shown 

in Figure 4.26 to realize a cleaner and clearer picture of the entire domain, e.g. blocks 0 to 4. 

The quantitative results for this filtered region are shown in Figure 4.27. 

These results are compared with Figure 4.23. The surface integral in Figure 4.23 and Figure 4.27 

has magnitudes of 0.287 and 0.433 respectively. The resultant magnitude from filtered data is 

150% of the resultant magnitude of non-filtered data. Although only small values of the second 

invariant of the velocity gradient contribute to the surface integral in Figure 4.27 this surface 

integral magnitude exceeds the reference magnitude for pressure. This means that the prediction 

of pressure is the result of the summation of large positive and negative surface integral 

components coming from both large and small magnitudes of the second invariant of the velocity 

gradient regions. 

4.3.  Point effect on the cylinder boundary 

The surface integral,  𝑄 , in equation 3.84a (or 4.2, which is the same) can be understood as the 

sum of differential contributions to the pressure at a point 𝑃 from the second invariant of the 

velocity gradient acting at an infinite number of points 𝑄 in the domain. The differential pressure 

contribution, 𝑑𝑃𝑃 = −
1

𝜋
𝑄𝑄 ln  

1

𝑟
 𝑑𝐴, converted to finite difference form, is given by ∆𝑃𝑃 =

−
1

𝜋
𝑄𝑄ln  

1

𝑟
 ∆𝐴, which is the contribution to the pressure at point 𝑃, from each point 𝑄 in the 

mesh. Intentionally, the point in which the second invariant of the velocity gradient, 𝑄, is 

considered was labeled as 𝑄, and, the point in which the pressure contribution, ∆𝑃, is calculated 

was labeled as 𝑃 for all points in each cell along the cylinder boundary in the following example. 

Instead of looking at one point 𝑃 for all points 𝑄 in the domain, here the objective is to look to 

one point 𝑄 and several points 𝑃 in the domain. These points 𝑃 are neighboring cells located 

along the cylinder boundary. In other words, the contributions to the pressure at each point on the 

cylinder boundary from the second invariant of the velocity gradient acting at point 𝑄 result in a 

pressure distribution on the cylinder boundary due to the second invariant of the velocity 
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gradient at that point 𝑄. These pressure distributions are dimensionless in VerFlow-V.01 and 

they are illustrated in Figures 4.28 and 4.29, using an appropriate scale magnification. 

Figure 4.28 shows three independent examples of points 𝑄 (in red) and its effect on the pressure 

along the cylinder boundary. The yellow lines represent the cylinder boundary. The orange radial 

lines are the pressure contributions from point 𝑄. Positive contributions point away from the 

circle into the external region along a radial line. Negative contributions are drawn from the 

cylinder boundary pointing inward. Point 𝑄 for each example in Figure 4.28 is close to but not 

touching on the cylinder boundary. 

In general there are very different and unbalanced distributions on the cylinder from the different 

locations within the flow field. 

 

Figure 4.28 Contribution of red points 𝑸 to the pressure at each cell along the cylinder boundary 

Figure 4.29 shows the contributions of 𝑄 at points very close to the cylinder (third row from the 

cylinder boundary). 

Small variations in the location of point 𝑄 sometimes produce rapid variation in the surface 

pressure distribution. All seven examples in Figure 4.29 show the same trend. In three of the 

examples, those with large negative values, the lines point inside the circle and crossover exactly 
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at the center of the circle to lines pointing outward. These trends contribute to our qualitative 

understanding of property gradients embedded in the data. 

 

Figure 4.29 Effect of points 𝑸 close to the cylinder on pressure at its boundary 

For all examples shown in Figure 4.29 the contributions, ∆𝑃𝑃 = −
1

𝜋
𝑄𝑄ln  

1

𝑟
 ∆𝐴, are zero on the 

opposite side of point 𝑄. The reason for this comes from the factor ln  
1

𝑟
 . The distance 𝑟 in the 

equation for ∆𝑃𝑃 is measured between point 𝑄 and point 𝑃. Since this equation is dimensionless, 

𝑟 is the number of diameters between the two points (the characteristic length is the diameter). 

When 𝑃 and 𝑄 are on opposite sides of the cylinder 1/𝑟 is just 1, and its natural logarithm is 

zero. As a consequence the whole term is zero. 

Similar results can be seen for points 𝑃 along the cylinder boundary when 𝑄 is located 

approximately at one diameter from the cylinder boundary, e.g. see two examples at the left in 

Figure 4.28. 
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4.4.  Contributions from 𝑸 to the drag and lift forces 

In the previous section, it was found that the velocity field at point 𝑄 affects the pressure at each 

point on the cylinder boundary. This section presents the individual contributions to drag and lift 

coefficients from every cell in the grid. To realize drag and lift contributions from an arbitrary 

cell in the domain where point 𝑄 is located, we use the equations in sections 3.3.1 and 3.3.2, and 

the use of pressure distributions shown in section 4.3. These calculations are implemented in the 

VerFlow-V.01 code. 

Pressure distributions along the cylinder boundary are calculated for every cell in the grid (point 

𝑄) domain and the drag and lift are stored separately as new properties in the domain associated 

with the location and area of the cells corresponding to 𝑄 points. Although drag and lift 

calculated from the velocity field could be easily normalized to a standard size of the grid cell, 

the contributions are not normalized since this will only maximize even more the effect in the 

region close to the cylinder, but the effect is of course considered in the discussion that follows. 

Note, these drag and lift contributions are exclusively due to pressure distributions from 𝑄 and 

they are not due to viscous effects. Note also 𝑄𝑑  is selected for both “V.” and “O.V.” variables. 

4.4.1 Contributions to the drag 

The result for drag contributions in Figure 4.30 is shown in a close up view in Figure 4.31, where 

limits are set. The color legend (filtered domain) highlights drag regions: positive in blue and  

negative in orange. 
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Figure 4.30 Contribution of each point in the domain to the cylinder drag (Min: Yellow, Max: Blue, zero: White) 

 

Figure 4.31 Closer view of drag contributions to the cylinder from the second invariant of the veloctity gradient field 

Limits on the color legend are adjusted to show the white zones as zero drag. The higher positive 

contributions to drag are located just in front of the cylinder and the higher negatives are at the 

two frontal lobes. Behind the cylinder, positive and negative regions appear alternated and 

decrease in intensity rapidly with downstream distance. The distribution of drag in space is 

similar to the distribution of 𝑄, where positive regions travel with the flow along the middle of 

the channel which identifies vortices. 

Vortices or eddies are associated with positive contributions to the cylinder drag downstream, 

while convergence and stream zones are responsible for a reduced drag (see discussion in section 

4.5). Regions that contribute to diminish the drag are associated with negative values that tend to 

travel along relatively high-pressure zones near walls. Around the cylinder there are eight to ten 

zones of alternating positive and negative drag contributions. These zones are studied in more 

detail in the following discussion and shown in Figures 4.32 and 4.33. Looking at the contour 

lines over the positive zones at the right of the cylinder, it is clear that positive zones reach larger 

magnitudes than the negative zones (comparison is done at similar radii and on similar cells). 

Although the negative zones cover a larger area, this increased area is not significant since the 

gradient is clearly very small in the zones, consequently the magnitude of this variable, 𝑄𝑑 , is 

nearly zero but negative. 
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Figure 4.32 Envisioning multiple instantaneous filtered information over the positive drag contributions from 𝑸. 

Figure 4.32 shows two simultaneous selected information: (1) the positive drag contributions 

from the second invariant of the velocity gradient, and (2) the velocity vectors relatively small in 

magnitude. Both are explained as follows. Local contributions to the drag coefficients due to the 

second invariant at every point in the domain, are indicated by the label “Qd” in the color legend 

bar at the left. This variable, Qd, has been filtered and only the positive region is displayed. 

Black lines are the contour lines of this variable. Instantaneous forces are drawn as straight lines 

positioned at the cylinder center (pressure, viscous and total forces) and pressure acting on the 

cylinder is also represented in cyan color (see Section 4.1.3). Red lines are the filtered velocity 

field, so that only relatively small velocities are drawn to scale in the domain considering the 

static frame of reference (see section 4.5.3). Yellow points signify where the smallest 

instantaneous velocities exist and identify stagnation points and sometimes eddy centers and 

convergence zones (see also section 4.5.3) 

At the specific instant of time shown in Figure 4.32, there are four clear positive regions for drag 

contributions along the cylinder boundary. The main source of drag is located at the left of the 

cylinder, a small zone close to the first stagnation point (left arc on the cylinder boundary). Black 

contour lines appear as points that get closer and closer indicating high gradients near the 

stagnation point. Already noted in the discussion of Figure 4.31, positive zones have a stronger 

effect on the drag than their negative counterparts. The positive zone directly associated with a 
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clockwise eddy in Figure 4.32, has a stronger effect than the negative zone associated with the 

“four way” convergence zone.  

In Figure 4.33, considering that the contributions to the drag were not normalized by the area of 

the cell, the effect on drag from small eddies is small but comparable to the effect on the drag 

from large eddies. 

The previous analysis of drag contributions from the pressure on the cylinder boundary presented 

in Section 4.1.1, is associated here with regions near the cylinder. Looking at Figure 4.33, the 

stronger region of positive contributions to the drag is in fact located in block 3 and block 1 has 

also important positive contributions while blocks 0 and 2 could even be ignored. Animation 4.4 

reveals that the strongly positive region at the left of the cylinder is slightly oscillating, e.g. up 

and down movement, which generates the oscillatory effect shown in Figure 4.13 for arc 3. 

Looking to Figure 4.13, the oscillation on the drag due to the pressure on arc 1 attenuates the 

oscillation on the drag due to the pressure on arc 3 to give the drag shown in Figure 4.14 

(center), which will be even more attenuated by the oscillation on the drag due to arcs 0 and 2, 

see Figure 4.14 at the right. The superposition of the oscillations is shown in Figure 4.14 at the 

left. A complex behavior in the pressure contributions is observed on the neighboring cells 

around the cylinder along arc 1 which is shown as an image sequence in Figure 4.33 and also as 

an Animation 4.4. Along arc 1, only one positive region persists and at two specific instants in 

time an additional positive region appears at times 0.00[s] and 1.00[s] in Figure 4.33.  The 

contributions to the drag in these regions close to arc 1 are also very close to zero compared with 

those regions close to arc 3. These observations suggest that the behavior on the cells close to arc 

1 generate the oscillations with a doubled shedding frequency in the drag, which attenuates the 

effect generated by arc 3. 

 

Animation 4.4 Contributions of  𝑸 to the drag 

A4.4_stagQDragFull_FS.mov
A4.4_stagQDragFull_FS.mov
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Figure 4.33 Evolution in time of positive contributions of 𝑸 to the drag 
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4.4.2 Contributions to the lift 

Lift contributions are mapped in Figure 4.34, a detailed enlarged view is shown in Figure 4.35. 

 

Figure 4.34 Contribution of each point in the domain to the cylinder lift (Min: Yellow, Max: Blue, zero: White) 

 

Figure 4.35  Closer view of lift contributions to the cylinder from the second invariant of the veloctity gradient field 

 

Animation 4.5 Contributions of  𝑸 to the lift 

A4.5_stagQLiftFull_FS.mov
A4.5_stagQLiftFull_FS.mov
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The large white region at the right downstream is associated with zero values, which indicates 

the lift decays very fast with distance from the cylinder. The strongest regions are located very 

close to the cylinder toward the top-left and top-right zones. All regions present a complex 

oscillatory behavior in time as can be seen in Animation 4.5. 

The white region (zero contribution to the lift) appears at some specific locations within the 

entire region: inlet, walls and in a region emerging from the cylinder at its right boundary. 

Alternating positive and negative zones in the front are coupled. Behind the cylinder, couples of 

both negative and positive regions grow alternately traveling with the flow downstream where 

they soon disappear. When growing, these couples are unbalanced which is associated with a 

growing vortex (see Animation 4.5) and lift on the cylinder. For example, in Figure 4.35, there 

are two negative regions of unequal strength traveling downstream approximately one diameter 

far from the cylinder, a counter clockwise eddy is located at the top left zone of the negative 

region (see Animation 4.5), which has more contour lines, is strong, and is located below the 

other negative coupled region; this is directly associated with the negative lift on the cylinder at 

that instant of time. Both negative regions can be compared since the areas of the cells are also 

comparable, although the contributions are not normalized with respect to a reference area of the 

cells. When the coupled regions have traveled downstream to a location two diameters far from 

the cylinder, the number of contour lines had reached equal values where there is no longer a 

stronger region in that couple. 

What is described for negative couples also exists for positive couples, which are associated with 

clockwise vortices and positive lift. 

4.5.  Convergence and eddy zones 

In an effort to better understand the detail of this flow, we take the idea of eddies, streams and 

convergence zones discussed by Hunt (Hunt, Wray, & Moin, 1988) where two frames of 

reference are considered. The first is a moving frame traveling at the mean velocity of the fluid 

(which is essentially the inlet velocity) and the second, is a static frame. Special tools were 

implemented in VerFlow-V.01 to help the user to qualitatively envision these two frames of 

reference. 
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Figure 4.36 Fluid zones adapted from Hunt paper (Hunt, Wray, & Moin, 1988) 

4.5.1 Useful zones defined by Hunt 

Convergence, eddy, and stream zones were defined by Hunt (Hunt, Wray, & Moin, 1988) (see 

Figure 4.36 adapted from Hunt). In this figure, Hunt shows how two streams carrying reacting 

species find each other in a convergence zone and contribute to the formation of an eddy. 

Although those zones were developed for turbulent flows, they also exist in the periodic laminar 

flow around a cylinder. 

4.5.2 Moving frame 

Consider a frame that is moving to the right at the same mean velocity or inlet velocity. An 

equivalent point of view occurs when the frame of reference is fixed, the mean velocity of the 

flow is zero, and the cylinder is moving to the left at the original mean velocity or inlet velocity. 

Based on the velocity vectors drawn for each cell by VerFlow-V.01, streamlines are shown as 

narrow lines in Figure 4.37 for this relative velocity field. The shaded circle in Figure 4.37 is the 

cylinder. 

The direction of streamlines is consistent over the whole region. Streams with opposite directions 

can meet each other only at convergence zones, which are identified and studied here in more 

detail. 



113 
 

 

Figure 4.37 Zones in the flow around a cylinder for a frame of reference moving at the mean velocity 

At a specific instant in time, flow around a cylinder is composed of convergent, eddy and stream 

zones which appear in the flow around a cylinder for that instant.  

In the general case, a “four way” convergence zone appears where two streams converge on each 

other in opposite directions and both streams are divided. These are also termed saddle points by 

some researchers. As a result, two outlet streams go away in opposite directions from the “four 

way” convergence zones. “Three way” convergence zones are defined when one of the four 

streams is replaced by a wall. 

 

Figure 4.38 Convergence zone C1 at the inlet (moving frame) 

At the left (inlet side), there exists a “three way” convergence zone C1 (Figure 4.37 and yellow 

points in Figure 4.38). The red lines in Figure 4.38 are scaled velocity vectors with respect to the 

moving reference frame in zones where the flow has slow velocities. The higher velocities have 

been filtered out in VerFlow-V.01 to avoid overlap. Small circles identify the origin of each 
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velocity vector in a cell. The fluid is pushed around the moving cylinder and divided into two 

streams at the inlet side, one passes over the cylinder and the other below it. The yellow circle 

indicates the presence of a stagnation zone. 

The fluid flow below the cylinder forms into an eddy E1 (see Figures 4.37 and 4.39). This eddy 

has a “cat’s eye” shape as defined by Hunt (Hunt, Wray, & Moin, 1988), and it is the result of 

the displacement and deformation of a circular eddy behind the cylinder (this can be seen in the 

non-moving frame of reference in section 4.5.3). Displacement and deformation of eddy and 

convergence zones are highlighted when the frame of reference is changed.  

 

Figure 4.39 Counter clockwise eddy E1 (moving frame) 

 

Figure 4.40 Convergence zone C2 (moving frame) 
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Only part of the fluid that flows below the cylinder takes a path about E1. The flow first finds a 

“four way” convergence zone C2. Figure 4.40 shows zone C2, the cyan lines shows only the 

direction of high velocity vectors. If the flow moves to the left at C2, it encloses E1. If the flow 

moves to the right, it encloses E3 and can return again at C2 behind the cylinder. Note that both 

E1 and E3 move in a counter clockwise direction. 

The flow going over the cylinder is impeded to move to the right because of the “three way” 

convergent zone C3 at the top wall. The size of the clockwise eddy E2 is increased (see Figure 

4.41) as the flow is pulled over the top of the cylinder. 

 

Figure 4.41 eddy zone E2 (moving reference) 

When the eddy zone E2 moves far enough, E2 detaches from the cylinder while another appears 

simultaneously, but with a smaller clockwise eddy and a “four way” convergent zone between 

E2 and the small eddy. This small eddy is established on the same side of E2, E4 and E6 but 

close to the cylinder. 

Eddy E2 grows rapidly and pushes C2 down until it touches the bottom wall where C2 is 

transformed into two “three way” convergent zones similar to C5 and C6 but not shown in 

Figure 4.37 (C5 and C6 were formed when E4 pushed down another “four way” convergent 

zone). One of these convergent zones (the equivalent to C6) will define an independent region of 

fluid enclosing E3, which travels at the mean velocity to the right with the moving frame. 

Similarly, eddies E4, E5 and E6 are separated regions of fluid traveling at the same inlet 

velocity. This is envisioned in the moving frame of reference. These eddies are “wrapped” while 
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growing. When the “four way” convergence zone appears, they basically stop growing and 

become trapped. 

A half of one cycle has been described. The sequence is repeated symmetrically to complete one 

shedding cycle. 

The eddy center and convergence points act as stagnation points, e.g. points C3, C4, C5, C6, C7, 

C8 and C9. The effect of the wall is to convert a “four way” convergence zone into two “three 

way” convergence zones. The zones around C3 and C4 are an example of this. In an infinite 

domain, a “four way” convergence zone would exist instead of C3 and C4 and the location of 

this zone would not be limited by the walls. So C3, C4, C5, C6, C7, C8 and C9 are the result of 

the confined walls in the computational domain. 

 

Figure 4.42 Streamlines (moving frame) over pressure (green: Min, blue: Max) 

Figure 4.42 shows the instantaneous streamlines in the moving frame. These lines are drawn over 

the pressure field. Note that eddies’ centers coincide with the lowest pressure for each region of 

the fluid. Convergence zones occur at high-pressure zones. 

 

Figure 4.43 Streamlines (moving frame) over second invariant of velocity gradient (green: Min, blue: Max) 
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“Four way” convergence zones originate where the second invariant of the velocity gradient is 

negative, see Figure 4.43, while eddies concentrate at positive values of the second invariant of 

the velocity gradient. Stream zones, in the moving frame, do not coincide with regions of 

positive 𝑄. 

Figure 4.44 shows the streamlines drawn over the vorticity field with respect to a moving 

reference frame. Negative vorticity appears in the eddies at the top with a clockwise rotation 

while positive vorticity appears at the bottom with counter clockwise rotation. The location of 

the “four way” convergence zone can also be identified looking at the vorticity field when the 

vortices are detached from the cylinder. 

 

Figure 4.44 Streamlines (moving frame) over vorticity (green: Min, blue: Max) 

4.5.3 Static frame 

The same instant of time used in section 4.5.2 is used in this section. 

 

Figure 4.45 Streamlines (static frame) 

The general picture of streamlines associated with the static frame of reference is shown in 

Figure 4.45. A detail of the region behind the cylinder can be seen in Figure 4.46. 
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Figure 4.46 Streamlines (static frame) near to the cylinder 

At any instant, there are four stagnation points on the cylinder: 𝐶𝑎 , 𝐶𝑏 , 𝐶𝑐  and 𝐶𝑑  in Figures 4.46 

and 4.47. The key to understanding how vortices or eddies originate is revealed by following one 

of these points, 𝐶𝑐 , in time and by associating this movement with the formation of an eddy, 𝐸𝑎 , 

and a “four way” convergence point, 𝐶𝑒 . For the Reynolds numbers used here, the angles 

between 𝐶𝑎  and 𝐶𝑏 , and between 𝐶𝑎  and 𝐶𝑑 , are approximately 127° while the angle between 𝐶𝑏  

and 𝐶𝑑  is 106°. The location of these three stagnation points presents a small oscillation of ±2° 

all moving in unison simultaneously during the shedding cycle. The other stagnation point, 𝐶𝑐 , 

oscillates approximately ±30° from the horizontal line during the shedding cycle. The oscillation 

of 𝐶𝑐  is displaced 180° in the shedding cycle with respect to the oscillation of the other three 

points, so that when 𝐶𝑐  is moving in a counter clockwise direction, 𝐶𝑎 , 𝐶𝑏  and 𝐶𝑑  move slightly 

but in a clockwise direction. 

When the distance between 𝐶𝑐  and 𝐶𝑏  reaches a minimum, 𝐸𝑎  and 𝐶𝑒  also appear at the instant of 

time shown in Figures 4.46 and 4.47. This is also the instant when an older clockwise eddy at the 

top, but far from the cylinder, is either completely detached from the cylinder in the moving 

frame or completely absorbed by another “four way” convergence zone at the bottom in the 

static frame. The eddy 𝐸𝑏  at the bottom finishes growing when the “four way” convergence zone, 

𝐶𝑒 , appears over it. What happens to 𝐸𝑏 , is dictated by the future location of 𝐶𝑐 , which completes 

the discussion. The convergence zone 𝐶𝑐  moves towards 𝐶𝑑  while eddy 𝐸𝑎  grows and eddy 𝐸𝑏  

will either be consumed by 𝐶𝑒  in the static frame of reference or simply displaced to the right in 

the moving frame of reference. While 𝐶𝑐  approaches 𝐶𝑑 , the bottom-left side of 𝐸𝑏  is 
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horizontally stretched until the point it is detached from the cylinder (viewed in the moving 

frame) generating simultaneously another clockwise eddy close to 𝐶𝑑  and a “four way” 

convergence zone in-between. 

 

Figure 4.47 Eddies (static frame) and stagnation points at the cylinder 

 

Animation 4.6 Stagnation points on the cylinder, vorticity field background 

Animation 4.6 shows where the stagnation points are located and how they move on the cylinder 

face. A black contour line is set in VerFlow-V.01 to coincide with zero vorticity. Velocity 

vectors have been filtered so that only small scaled vectors are drawn using the static frame of 

reference. 

 

Figure 4.48 Streamlines (static frame) over pressure (green: Min, blue: Max) 

A4.6_StagVortVelVectors_FS.mov
A4.6_StagVortVelVectors_FS.mov
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Figures 4.48, 4.49 and 4.50 show the streamlines over the pressure, second invariant of the 

velocity gradient and vorticity fields respectively, in the static frame. 

Figure 4.48 shows the streamlines for the same instant of time shown in Figure 4.42, but for the 

static frame of reference, both over the pressure field. It is clear, in the static frame, eddies 

closest to the cylinder are revealed since the velocity of the fluid in the wake region is close to 

zero while downstream the detailed streamline structure of the eddies is obstructed by the 

downstream motion. The static frame shows streamlines crossing over the low-pressure zones. 

 

Figure 4.49 Streamlines (static frame) over second invariant of velocity gradient (green: Min, blue: Max) 

Figure 4.49 shows the same result but over the second invariant of the velocity gradient 𝑄. As 

noted before regions of positive 𝑄 are related with low-pressure regions downstream and with 

vortices or eddies, which are not envisioned in the static frame. 

 

Figure 4.50 Streamlines (static frame) over vorticity (green: Min, blue: Max) 

Similarly, Figure 4.50 shows the streamlines over the vorticity field in the static frame, again, for 

comparison purposes. The color legend bar indicates that blue regions correspond to positive 

vorticities or clockwise eddies downstream. 
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4.6.  Verification of finite difference forms of 𝑸 using VerFlow-V.01 

Results in this section and in Section 4.7 show close agreement between the model simulation, 

the numerical approach developed in this thesis and experimental data. In this section, finite 

difference forms for the second invariant of the velocity gradient, 𝑄, are used to calculate this 

variable based on mathematical derivations realized in Chapter 3, verifying correspondence with 

the second invariant of the velocity gradient calculated by the OpenFoam simulation. 

 

Figure 4.51 Legend bar for Figures 4.52, 4.53 and 4.54 

The second invariant of the velocity gradient is evaluated using the three finite difference forms 

given in Section 3.2.3. These forms were used in a quantitative analysis in VerFlow-V.01 for 

block 4 in the mesh (see Figure 2.2). This comparison includes a qualitative analysis by 

envisioning simulation results using the filtered domain described in Section 4.2.4. 

Figure 4.51 compares the color legend bar used in Figure 4.52 (yellow-red) with the color legend 

bar used in Figures 4.53, 4.54, 4.55 and 4.56 (green-blue). The small red rectangles highlighted 

in the color legend bars of Figure 4.51, indicate the visible region of the second invariant of the 

velocity gradient in the figures below, where only positive and small magnitudes of the 𝑄 

variable are envisioned. These selected filtered domain regions facilitate a qualitative 

comparison of the three different finite difference forms in the figures that follows.  
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The second invariant of the velocity gradient tensor from the OpenFoam simulation is 

represented in Figure 4.52 for the entire region and is used also in Figures 4.53, 4.54, 4.55 and 

4.56 for blocks 0, 1, 2 and 3 since 𝑄 is calculated for block 4. 

 

Figure 4.52 Second invariant of the velocity gradient from OpenFoam, 𝑸 

The results in block 4 that use the central difference approach given by Equation 3.49 

corresponds to Equation 3.35 and is shown in Figure 4.53. An identical reproduction of the 

OpenFoam result is generated using this approach. 

Figure 4.54 and 4.55 show the results of applying Equation 3.36 with two different approaches. 

In Figure 4.54 a central difference approach given by Equation 3.52 is used while in Figure 4.55 

a forward difference approach is used. The central difference gives again an identical result. 

Very small differences are observed when using the forward difference approach. 

Figure 4.56 shows the result of applying a central difference approach to Equation 3.37. This 

approach is given by Equation 3.54. The result is not identical but very close to that calculated 

by OpenFoam. The main differences are found at the left and right boundaries of block 4 and 

must be generated by the extra number of cells required for the calculation (see Figure 1.2). 

These results first confirm that these equations are similar and second suggest that OpenFoam 

uses either Equation 3.35 or Equation 3.36 with a central difference approach. OpenFoam 

documentation does not describe what finite difference forms are used. 
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Figure 4.53 𝑸 applying Equation 3.35 with a central difference approach in block 4 

 

Figure 4.54 𝑸 applying Equation 3.36 with a central difference approach in block 4 

 

Figure 4.55 𝑸 applying Equation 3.36 with a forward difference approach in block 4 

 

Figure 4.56 𝑸 applying Equation 3.37 with a central difference approach in block 4 
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4.7.  Verification of the pressure distribution around the cylinder 

Comparison of the pressure distribution from OpenFoam and experimental data for small 

Reynolds numbers completes the validation of simulation results studied in this thesis. 

From the OpenFoam simulation, VerFlow-V.01 is customized to take the pressure at the cells 

next to the cylinder boundary. This information is plotted as a function of time and angular 

position, along the cylinder using cyan color. Figure 4.57 shows four instantaneous views of the 

pressure distribution along the cylinder. Positive pressure coefficients are represented pointing 

outside and negative pointing inside.  

 

Figure 4.57 Instantaneous pressure distribution along the cylinder boundary envisioned by VerFlow-V.01 

These four instantaneous pressure distributions are plotted in Figure 4.58 as a function of angle 

𝛼, defined counter clockwise from the horizontal left radius. The mean pressure at each location 

is also calculated and plotted for comparison. 

 

Figure 4.58 Instantaneous pressure distribution as a function of the angle from the horizontal. 



125 
 

The pressure distribution along the cylinder adapted from experimental data (Churchill, 1988) is 

shown in Figure 4.59 for Reynolds numbers Re = 67 & 73 which are the closest to the Re =

67.4 used in this Chapter. 

Data from Figures 4.58 and 4.59 is used and plotted in Figure 4.60 for comparison.  

 

Figure 4.59 Pressure distribution for small Reynolds numbers adapted from Churchill book (Churchill, 1988) 

 

Figure 4.60 Comparison of instantaneous and mean pressure with experimental data 
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The pressure coefficient mean value for each angle about the cylinder in the simulation and the 

experimental data show the same general tendency, although the maximum and minimum 

experimental values are slightly larger with respect to the simulation.  

In general good agreement is observed where the pressure variation in time is confirmed in 

Figure 4.60. This result is significant because pressure variation has been extensively used in this 

thesis as a comparative point for other calculations. 

 

Figure 4.61 Predicted and simulated pressure along the cylinder boundary for 𝒕 = 𝟎.𝟑𝟓[𝒔] 

The prediction of the pressure using the integral solution of the Poisson equation, P(+), which is 

given by Equation 4.84, is compared in Figure 4.61 with the pressure from the OpenFoam 

simulation, P(OF). The difference, Diff, between these pressures is shown for every cell along 

the cylinder for the simulation time 𝑡 = 0.35[𝑠]. Good agreement is observed between both 

curves. 

Along the cylinder boundary and for the same instant of time 𝑡 = 0.35[𝑠], the predicted pressure, 

P(+), is shown in Figure 4.62 as the sum of the integral terms (Q), (𝐶𝐼1) and (𝐶𝐼2) described in 

Section 4.2. 
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Figure 4.62 Integral components for the pressure along the cylinder boundary for 𝒕 = 𝟎.𝟑𝟓[𝒔] 

The drag effect is calculated from the three components of P(+). This result is shown in Table 

4.1 for times 0.35[𝑠], 0.85[𝑠], 1.35[𝑠] and 1.85[𝑠] while the period is 1.95[𝑠]. The drag 

calculated from the surface integral is 29% of the drag due to pressure, while the contribution 

from the first contour integral is 20% and from the second contour integral is 51%. These values 

are approximately constants in time. 

t [s] 
Drag 
P(+) 

Drag 
(Q) 

Drag 
(Cl1) 

Drag 
(Cl2) 

0.35 1.78 0.51 0.35 0.92 

0.85 1.77 0.50 0.35 0.91 

1.35 1.79 0.52 0.35 0.92 

1.85 1.77 0.50 0.35 0.91 

Table 4.1 Drag contributions from integrals in Equation 3.84 

The contour integral components (𝐶𝐼1) and (𝐶𝐼2), shown in Figure 4.62, are decomposed into 

their constituents: the left (L), right (R), top (T), bottom (B) and cylinder (Cy) contour portions. 

These results are shown in Figures 4.63 and 4.64. 
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Figure 4.63 Components of (CI1) from each boundary for 𝒕 = 𝟎.𝟑𝟓[𝒔] 

 

Figure 4.64 Components of (CI2) from each boundary for 𝒕 = 𝟎.𝟑𝟓[𝒔] 

Figures 4.64 and 4.65 reveal that the general shape of the contour integral curves, (𝐶𝐼1) and 

(𝐶𝐼2), is given by the cylinder boundary while the other boundaries contribute with an 

approximate constant pressure, resulting in zero drag contributions. As a consequence the drag 

effect from (𝐶𝐼1) and (𝐶𝐼2) originates on the cylinder boundary. 

4.8.  Chapter nomenclature 

Δ𝑃  pressure per unit density contribution  
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Δ𝑃𝑃  pressure per unit density at point 𝑃 contribution 

𝜋  constant = 3.14159265359  

(+)  predicted value for pressure from sum of integrals 

𝐴  area 

 (𝐵)  boundary identifier meaning bottom 

𝐶𝐷  drag coefficient 

𝐶#  convergence zone number # (moving frame) 

𝐶#  convergence zone number # (static frame) 

𝐶𝐿  lift coefficient 

 𝐶𝐼1   first term of contour integral in Equation 3.84 

 𝐶𝐼2   second term of contour integral in Equation 3.84 

𝐸#  eddie zone number # (moving frame) 

𝐸#  eddie zone number # (static frame) 

𝐿  contour length 

(𝐿)  boundary identifier meaning left 

𝑛   normal vector pointing outside the cylinder  

(𝑂.𝑉. )  overlapped variable 

𝑃  pressure per unit density or point in an arbitrary domain 

(𝑃)  pressure per unit density from OpenFoam simulation 

𝑃𝑃   pressure per unit density at point 𝑃 

𝑄  second invariant of the velocity gradient or point in an arbitrary domain 
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 (𝑄)  surface integral in Equation 3.84 

𝑄𝑄  second invariant of the velocity gradient at point 𝑄 

𝑟  cylinder radius or distance from point 𝑃 to point 𝑄 

 (𝑅)  boundary identifier meaning right 

Re  Reynolds number 

 (𝑇)  boundary identifier meaning top 

𝑢∞   velocity at the inlet 

𝑢𝑥   sreamwise velocity 

 (𝑉. )  variable 
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Chapter 5 .  Conclusions 

The discussions in previous chapters include a variety of results and findings. These are 

organized here into conclusions using a narrative format. Although the 2D periodic laminar flow 

around a cylinder has been extensively studied, results here have contributed to understanding 

more about the complexity of this flow. This chapter summarizes the most relevant results, first 

simulation “data” is validated, followed by the development of VerFlow-V.01 that was used to 

explore and envision the complexity of periodic laminar flow both quantitatively and 

qualitatively. 

5.1.  Programs  

Two computer programs were used: (1) OpenFoam was used to create initial numerical 

simulation “data” and (2) VerFlow-V.01 was developed and customized for this particular case 

to interpret the OpenFoam simulation results. 

5.1.1 OpenFoam simulation 

The OpenFoam simulation models 2D periodic laminar (PL) flow (see Figure 1.4) for the PL 

range of Reynolds numbers given in Table 2.2. Numerical results were validated using FFT and 

the Strouhal number. In general the results show good agreement with previous experimental 

data, such as the general behavior of the velocity field, vorticity field and the pressure 

distribution along the cylinder boundary (see Figure 4.60). The constriction of the flow due to 

the walls at the top and bottom increases the drag force in comparison to the unbounded case, 

usually reported in the literature. Our result for the drag was 𝐶𝐷 = 2.24, while experimental data 

varies, e.g. between 𝐶𝐷 = 1.54 and 1.95 depending upon the source (see Figure 4.1). 

Constricted flow between the cylinder and wall boundaries may also be responsible for a change 

in the shedding frequency and as a consequence the Strouhal number. The Strouhal numbers in 

our simulation were 0.207 for Re = 56.2 and 0.214 for Re 67.4 (see Equation 2.29) while 3D 

experiments in unbounded flows gives values around 0.15 for these Reynolds numbers 

(Churchill, 1988) and asymptotes, St = 0.21 (3D) and St = 0.2417 (2D), are also determined for 

larger Reynolds numbers Re >200 (Kundu & Cohen, 2004). 
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The grid defined in Section 2.3 provides good spatial resolution of the entire flow region and 

even higher resolution close to the cylinder. The features that can be resolved are on the order of 

1% of the cylinder diameter in the region near to the cylinder and on the order of 5% of the 

cylinder diameter in the far region. 

5.1.2 VerFlow-V.01 

The OpenFoam simulation results can be studied, with some limitations, in ParaView but 

ParaView is limited in its versatility. The results reported in this research were possible because 

of the development of a customized program: VerFlow-V.01, “Ver” is a Spanish word which 

means “see”, which reflects the enhanced qualitative imaging capabilities of the VerFlow-V.01 

program. The quantitative and qualitative characteristics implemented in VerFlow-V.01, used 

throughout this thesis are unique, in the sense that these concepts evolved as a consequence of 

many discussions among the committee members advising this research. 

Three differential equations and the corresponding finite difference forms were derived and used 

to calculate the second invariant of the velocity gradient, 𝑄. The numerical results of these three 

finite difference forms were implemented using VerFlow-V.01, and are shown to be consistent 

with the second invariant of the velocity gradient as calculated by OpenFoam. These results were 

also used to solve the surface integral in Equation 3.84, which proved to be a significant 

component in calculating the pressure at any point in the flow field. 

5.1.3 Time resolution 

An innovative idea for a better use of the available “data” (numerical results from the OpenFoam 

simulation) was implemented which increased the temporal resolution of the data set. The idea is 

to rearrange information from several cycles into a single cycle, taking advantage of the real time 

resolution of the original simulation in OpenFoam (see Section 2.7.5 for details). This increased 

time resolution was used when investigating the phenomena involved in the shedding nature of 

this flow. 

5.2.  Forces on the cylinder 

Drag and Lift coefficients, due to pressure and viscous effects acting along the cylinder were 

calculated in VerFlow-V.01. The calculations were organized with respect to four arcs, 
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associated with the four blocks or quadrants, enclosing the cylinder. Results are decomposed 

with respect to each separate quadrant of the cylinder surface. 

The most important pressure contributions to the drag are associated with arcs 1 and 3 (see 

Figure 4.13) while the pressure drag effects associated with arcs 0 and 2 (bottom and top 

quadrants) can be neglected. 

The most important pressure contributions to the lift are associated with arcs 0 and 2 (bottom and 

top quadrants, see Figure 4.13) whose individual oscillations are in phase and results in a strong 

oscillation when summed. 

The most important viscous contributions to the drag come from arcs 0, 2 and 3 (bottom, top and 

front quadrants) while viscous effects along arc 1 (back quadrant) can be neglected (see Figure 

4.15). The resultant viscous drag is still small when compared with the total drag: 25.8% of the 

total (see Figure 4.4). 

The most important viscous contributions to the lift come from arcs 1 and 3 (back and front 

quadrants), while the magnitude of lift associated with arcs 0 and 2 (bottom and top quadrants) is 

significant but effectively cancel when summed (see Figure 4.15). Viscous effects on the lift are 

also small: 15% (see Figure 4.8). A phase delay in the maximum viscous lift of 32.3° with 

respect to the pressure lift is associated with the vortex shedding. 

The drag exhibits an oscillation at a double the shedding frequency (see Figure 4.5), which is 

consistent with Osama Marzouk’s previous analysis (Marzouk, 2009). The oscillation for the 

total drag is precisely predicted in amplitude and phase for our case from the oscillation given by 

the combined action of pressure drag from blocks 1 (right) and 3 (left). 

5.3.  The second invariant of the velocity gradient, 𝑸 

The second invariant of the velocity gradient, 𝑄, is used in this thesis to predict the pressure at 

any point (see Section 4.2), the contribution of 𝑄 to the pressure distribution on the cylinder 

boundary associated with any arbitrary cell (see Section 4.3), and the drag and lift contributions 

on the cylinder for every cell in the entire domain (see section 4.4). Equation 3.84, which is the 

2D solution for the Poisson equation, was implemented in VerFlow-V.01 and used to establish 

the following conclusions. 
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5.3.1 Pressure at a point 

The prediction of the pressure at a point is possible using VerFlow-V.01 for rectangular domains 

in block 4 and also for the entire domain. The results in the prediction of the pressure are always 

very close or equal to the pressure given by OpenFoam in both domains. VerFlow-V.01 allows 

the user to compare the influence and “weight” of each component contributing to the prediction 

of the pressure at a point from the integral solution to Poisson’s equation. These components are 

a surface integral including the second invariant of the velocity gradient, and two contour 

integrals with contributions from each boundary (left, right, top, bottom or cylinder). For both 

domains, the surface integral of 𝑄 typically has significant contributions. The contributions from 

boundaries are sometimes small, especially when these boundaries are far from the point where 

the pressure is predicted. 

VerFlow-V.01 allows the user to limit the surface integration component given in Equation 

3.84a. Adjusting the minimum and maximum variable limits on the data acts as a filter for the 

surface integration. Since this filter can be applied directly to any of the variables, this tool 

becomes extremely useful for identifying the more important contributions from the velocity 

field. 

5.3.2 Drag and lift contributions 

From the pressure distribution, which was generated along the cylinder boundary for every cell 

in the domain, drag and lift contributions were also derived and implemented in VerFlow-V.01. 

The strongest region, which provides positive drag, is located in front of the cylinder and 

oscillates slightly up and down from the horizontal line which corresponds to the small doubled 

shedding frequency variation observed for the drag on the cylinder, although this effect is 

attenuated by the other regions in the flow (see discussion in Section 4.4), e.g. in particular the 

effect generated near to the stagnation points behind the cylinder. The study of drag 

contributions clearly shows that vortices downstream tend to individually contribute to the drag 

force on the cylinder while regions outside the vortices present negative contributions. 

The stronger positive and negative zones which contribute to the lift are located upstream of the 

cylinder, positive zones exist very close to the top-front cylinder boundary (positive 

contribution) and negative zones exist very close to the front-bottom cylinder boundary (negative 



135 
 

contribution). These two zones propagate from the cylinder into the wake and alternately shed as 

eddies (vortices). These eddies grow and move downstream. The extended zone associated with 

the vortices moves horizontally and couple with another zone of lower intensity, which has the 

same sign and can be associated with the four way convergence zone. 

The surface integral (Q) of equation 3.84 contributes to the cylinder, drag due to pressure with 

29% , while the first contour integral (CI1) does so with 20% and the second contour integral 

(CI2) with 51% for the specific case studied in Chapter 4. Since these values remain fairly 

constant, it is enough to know the (Q) contribution and divide the result by 0.29 to get the drag 

due to pressure for this case. 

5.4.  Additional qualitative remarks 

The customized program VerFlow-V.01 facilitates understanding complex flow phenomena 

associated with the periodic laminar flow around a cylinder. The following three topics were 

examined in this work and aid in interpretation of the flow field: (1) moving and static frames, 

(2) eddy, convergence and stream zones, and, (3) stagnation points. 

5.4.1 Moving and static frames 

VerFlow-V.01 was customized to envision the filtered velocity field including direction and 

magnitude of the vectors for frames of reference moving at a variable velocity. Two frames of 

reference are used to identify the vortices: the moving and the static. In the moving frame (see 

Figure 4.37), vortices can be seen traveling downstream while in the static frame (see Figure 

4.45), vortices can be seen close to the cylinder because their velocity is also close to zero. The 

vortices in the static frame grow and disappear when they move out of the reverse flow region. 

The behavior of the flow in the moving and static frame is described using the definitions 

introduced by Hunt et al: eddies, convergence and stream zones (Hunt, Wray, & Moin, 1988). 

Figures 4.37 and 4.45 show the reference streamlines for the flow at a fixed time in the moving 

frame of reference and in the static frame of reference respectively. 

5.4.2 Eddy, convergence and stream zones: 

“Four way” and “three way” convergence zones are defined in Section 4.5.2 as regions in which 

currents of flow are either divided or joined. The constriction in the flow because of the walls 
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transforms a “four way” convergence zone into two “three way” convergence zones at the top or 

bottom walls. The “four way” convergence zone appears when an eddy is detached from the 

cylinder boundary, which can be seen in the moving frame of reference. In the static frame, an 

eddy and a “four way” convergence zone on the opposite side consume each other along the 

reverse region of the flow in the wake and both disappear. When the eddy is detached from the 

cylinder, the formation of a “four way” convergence zone is realized and the formation of a 

small eddy at the same side of the cylinder is also observed very close to the cylinder boundary. 

A detailed explanation of the vortex or eddy formation is given in section 4.5.3. VerFlow-V.01 

helps the user to identify the convergence and eddy regions dynamically in an interactive 

qualitative sense. 

5.4.3 Stagnation points 

For the Reynolds number of 67.4 flow in the constricted region studied in this simulation, four 

stagnation points are observed along the cylinder boundary. The first stagnation point is located 

at the left and presents a slight oscillation ±2°. Two other stagnation points are located at 127° 

symmetrically at the top and bottom sides. The oscillation of ±2° also affects these two 

stagnation points which are all in phase. A fourth stagnation point moves down and up behind 

the cylinder approaching the other two stagnation points in an oscillation of ±30°. The 

oscillation of this point is not in phase with respect to the oscillation of the other three stagnation 

points, which are displaced 180°. A detailed explanation is given in Section 4.5.3 where these 

stagnation points are qualitatively envisioned in Animation 4.6, from images originally 

developed in VerFlow-V.01. 
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Appendix A. General guide to modify the original OpenFoam Simulation 

Part I: OpenFoam 

OpenFoam (Open Field Operation and Manipulation) is an open source program for fluid 

dynamic simulation. The following link connects directly with the corresponding website: 

http://www.opencfd.co.uk/openfoam/. Tutorials are available going through the Documentation 

User’s Guide tabs. 

Generating data for an incompressible viscous flow passing around a cylinder requires attention 

to the following requirements for reproducibility of results. 

FoamX can be used as a pre-processing tool that modifies the corresponding files from a user 

friendly window. One can also modify the files directly by accessing them through an editor such 

as WinVi in a MS-Windows Operating System (OS), or the vi editor working in a UNIX/Linux 

OS shell. 

The key information to create the grid is stored in the “blockMeshDict” file in the 

“constant/polyMesh” folder. Vertices, blocks, edges and patches are defined here. OpenFoam 

always works in a three dimensional space. Blocks are defined by eight vertices. Where the line 

between two vertices is an arc, it has to be written in the “edges” section. The required 

information for an arc is the two vertices and the coordinates of any point different from the 

vertices in the arc. Each block is divided in cells and the cell size can vary gradually depending 

on selecting the “simpleGrading” option. The inlet, outlet and walls including the cylinder are 

defined as “patches” 

IcoFoam is selected among nine incompressible flow solvers, since it is for transient 

incompressible, laminar flow of Newtonian fluids. This information must be included in the 

“ControlDict” file in the “system” folder. 

The kinematic viscosity is entered as “nu” in the “transportProperties” file in the “constant” 

folder. 

The “boundary” file in the “constant” folder defines the characteristics of each “patch”. Here slip 

condition is established at the walls and no-slip condition at the cylinder. 

http://www.opencfd.co.uk/openfoam/
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The “U” file in the “0” folder contains the initial data for velocities. It must include the velocity 

uniform value for the inlet boundary condition. 

The “P” file in the “0” folder does the same for the “U” file but with the pressure field. In this 

case, it establishes a “uniform 0” value at the outlet. 

The “fvSolution” file in the “system” folder”, specifies the solvers and tolerances used for 

solving the “P” and “U” fields. 

The “fvSchemes” file located in the same folder, indicates the gradient, divergence, interpolation 

and general schemes used. In general they can remain as the original defaults (Euler, Gauss 

linear). 

To encourage reproducibility of results files listed above have been archived and can be 

downloaded from the Virginia Tech ETD system. 

Part II: Data modification 

The objective here is to provide an instructive example where results shown in chapters 3 and 4 

can be reproduced and modified as necessary. To do this, change for example the velocity at the 

inlet, the time step or the solver directly in the original files, run OpenFoam again and change 

some specific information in VerFlow-V.01 to work with different primary results. 

We have used the Constellation PCs: Taurus, Leo and Libra computers at the Laboratory for 

Scientific Visual Analysis at Virginia Tech to generate the original data from OpenFoam-1.4.1. 

VerFlow-V.01 requires the following OpenFoam files: 

 “NameCase/constant/polyMesh/blockMeshDict” describes the geometry and should not 

be altered at all 

 “NameCase/Time/U” Velocity field for a specific time 

 “NameCase/Time/P” Pressure field for a specific time 

 “NameCase/Time/vorticity” Vorticity field for a specific time 

 “NameCase/Time/Q” Second invariant of the velocity gradient (Q) field for a specific 

time 
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Here is a general description of the procedure to modify the data from one of those already used, 

which now we call “NameCase”: 

 Put a copy of the folder case “NameCase" in a folder (Root) inside the tutorials 

 Inside NameCase" should only be the folder “0”, “constant” and “system”. The other 

folders have to be erased from there) 

 Inside the folder “0” should only remain the files “P” and “U” and the other folder and 

files should be erased) 

 Open a terminal 

 Move to the tutorials directory: cd …run/tutorials/ 

 Run FoamX 

 Open Case Browser 

 Open the Root (in which is already located “NameCase”) 

 Open the Case “NameCase" 

 Edit and modify if necessary the Dictionary Entries 

 Check especially the values in parenthesis: deltaT (0.001), endTime (80), writeInterval 

(200), writeFormat (ascii) in the controlDict Dictionary; nu (8.9E-7) in transport 

properties; and, Uleft (uniform 0.012,0.0,0.0) in U field. Some of them can be changed, 

like the velocity at the left to get a new data set for a different Reynolds. 

 Run BlockMesh from FoamUtilities>Mesh>Generation>blockmesh. This will generate 

the mesh for the calculations. 

 Run the case by pressing the play button “Start Calculation”. It will take a long time, 

probably some days. 

 Run Q and vorticity from FoamUtilities>postprocessing>velocityfield 

 Finally, copy the folder results (the whole folder “NameCase”) in VerFlow-V.01 folder. 

VerFlow-V.01 requires adjustment from the code in some initial variables in order to process the 

previous results. Among the required information are the new “NameCase”, the number of time 

steps, the time interval and the general description. Note here that VerFlow-V.01 is fully 

commented, but should be studied wisely to ensure the changes are not generating wrong results.  

VerFlow-V.01 was developed for a specific problem and it will require few changes for minor 
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modifications in the original data but things like inserting a new block in the geometry, for 

example, will require writing a new program. 
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Appendix B. VerFlow-V.01: Main Subroutines 

Ver, a Spanish word which means “see” was used since it is the primary language of the author 

and the main objective of VerFlow-V01 was to envision and discover qualitatively the intuitive 

world behind the quantitative calculations which were also included in VerFlow-V.01. VerFlow-

V.01 was written in Microsoft Visual Basic 2008. In this Appendix, the Main Subroutines of 

VerFlow-V.01 are shown in the order indicated under the Code Reference title. All programs are 

copyright protected Miguel Darío Ortega López under the VerFlow license below. 

VerFlow Software License 

Copyright © 2009 by Miguel Darío Ortega López. All rights reserved. Some individual files may 

be covered by other copyrights (this will be noted in the file itself). 

Redistribution and use in source and binary forms are permitted provided that this entire 

copyright notice is duplicated in all such copies. No charge may be charged for copies, 

derivations, or distributions of this material without the express written consent of the copyright 

holder. 

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED 

WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 

MENCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE. 

IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 

(INCLUDING, BUT NOT LIMITED TO, LOSS OF USE, DATA, OR PROFITS OR BUSINESS 

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGE. 

CODE REFERENCE 

The following list is a reference of the selected VerFlow-V.01 subroutines, which code is shown 

in the next section of this Appendix. 

Reading velocity field: Reads and stores velocity field. 

Reading pressure: Reads and stores pressure field. 
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Reading second invariant of the velocity gradient, Q: Reads and stores Q field. 

Reading vorticity field: Reads and stores vorticity field. 

Calculating Q, 3 different approaches, block 4: Calculates Q from 3 finite difference 

equations. 

General geometry:  

Calculating and envisioning flow around a cylinder: Principal subroutine of VerFlow-

V.01. This part of the program includes filtering the variable (V.) and the overlapped variable 

(O.V.), establishing contour lines, calculating the contour integrals at each boundary and  Q 

integration for rectangular and entire domains, grid and velocity vectors (moving and static 

frames), contributions to the pressure field from a point, pressure and viscous forces. 

Conversion to the unique reference system (five blocks subroutines) 

Drag and Lift pressure contributions from every point 

SELECTED CODE 

Reading velocity field: 

    Sub Vel() 'read velocities and get magnitude 

        Me.Text = "Reading velocity field" 

        For it = 0 To nt - 1 

            it1 = t0 + it * dt 

            PNameFileM = Ptxt2 & Ptxt3 & "\" & it1 & "\u" 

            Dim sr As StreamReader = New StreamReader(PNameFileM) 

            Do While Ptxt1 <> nn 

                Ptxt1 = sr.ReadLine() 

            Loop 

            Ptxt1 = sr.ReadLine() 'ready to begin with useful data 

            For i10 = 0 To 3 'first 4 blocks 

                For i = 1 To NR 

                    For i11 = 1 To NQ 

                        Ptxt1 = sr.ReadLine() 

                        Vcomp() 

                        Vx(i10, i11 - 1, i - 1, it, 0) = u1 

                        Vx(i10, i11 - 1, i - 1, it, 1) = u2 

                        Vx(i10, i11 - 1, i - 1, it, 2) = u3 

                        Vx(i10, i11 - 1, i - 1, it, 4) = uu 

                        If it = 0 And i10 = 0 And i = 1 And i11 = 1 Then 

                            u1min(0) = u1 : u1max(0) = u1 

                            u1min(1) = u2 : u1max(1) = u2 

                            u1min(2) = u3 : u1max(2) = u3 
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                            u1min(4) = uu : u1max(4) = uu 

                        End If 

                    Next 

                Next 

            Next i10 

            'fifth block 

            For i11 = 1 To NL 

                For i = 1 To NQ 

                    Ptxt1 = sr.ReadLine() 

                    Vcomp() 

                    Vx4(NL - i11, i - 1, it, 0) = u1 

                    Vx4(NL - i11, i - 1, it, 1) = u2 

                    Vx4(NL - i11, i - 1, it, 2) = u3 

                    Vx4(NL - i11, i - 1, it, 4) = uu 

                Next 

            Next 

            sr.Close() 

        Next 

    End Sub 

 

 

Reading pressure: 

    Sub Pres() 'read pressure 

        Me.Text = "Reading P" 

        For it = 0 To nt - 1 

            it1 = t0 + it * dt 

            PNameFileM = Ptxt2 & Ptxt3 & "\" & it1 & "\p" 

            Dim sr As StreamReader = New StreamReader(PNameFileM) 

            Do While Ptxt1 <> nn 

                Ptxt1 = sr.ReadLine() 

            Loop 

            Ptxt1 = sr.ReadLine() 'ready to begin with useful data 

            For i10 = 0 To 3 'first 4 blocks 

                For i = 1 To NR 

                    For i11 = 1 To NQ 

                        Ptxt1 = sr.ReadLine() 

                        Vx(i10, i11 - 1, i - 1, it, 3) = Val(Ptxt1) 'Pressure 

                                                                   0-3 blocks 

                        If it = 0 And i10 = 0 And i = 1 And i11 = 1 Then 

                            u1min(3) = Val(Ptxt1) : u1max(3) = Val(Ptxt1) 

                        End If 

                        If Val(Ptxt1) < u1min(3) Then u1min(3) = Val(Ptxt1) : 

                                                    u1filtmin(3) = Val(Ptxt1) 

                        If Val(Ptxt1) > u1max(3) Then u1max(3) = Val(Ptxt1) : 

                                                    u1filtmax(3) = Val(Ptxt1) 

                    Next 

                Next 

            Next i10 

            'fifth block 

            For i11 = 1 To NL 

                For i = 1 To NQ 

                    Ptxt1 = sr.ReadLine() 
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                    Vx4(NL - i11, i - 1, it, 3) = Val(Ptxt1) 'Pressure fifth 

                                                                       block 

                Next 

            Next 

            sr.Close() 

        Next 

    End Sub 

 

 

Reading second invariant of the velocity gradient, Q: 

    Sub Q() 

        Me.Text = "Reading Q" 

        For it = 0 To nt - 1 

            it1 = t0 + it * dt 

            PNameFileM = Ptxt2 & Ptxt3 & "\" & it1 & "\Q" 

            Dim sr As StreamReader = New StreamReader(PNameFileM) 

            Do While Ptxt1 <> nn 

                Ptxt1 = sr.ReadLine() 

            Loop 

            Ptxt1 = sr.ReadLine() 'ready to begin with useful data 

            For i10 = 0 To 3 'first 4 blocks 

                For i = 1 To NR 

                    For i11 = 1 To NQ 

                        Ptxt1 = sr.ReadLine() 

                        Vx(i10, i11 - 1, i - 1, it, 5) = Val(Ptxt1) 'Q 0-3 

                                                                    blocks 

                        If it = 0 And i10 = 0 And i = 1 And i11 = 1 Then 

                            u1min(5) = Val(Ptxt1) : u1max(5) = Val(Ptxt1) 

                        End If 

                        If Val(Ptxt1) < u1min(5) Then u1min(5) = Val(Ptxt1) : 

                                                    u1filtmin(5) = Val(Ptxt1) 

                        If Val(Ptxt1) > u1max(5) Then u1max(5) = Val(Ptxt1) : 

                                                    u1filtmax(5) = Val(Ptxt1) 

                    Next 

                Next 

            Next i10 

            'fifth block 

            For i11 = 1 To NL 

                For i = 1 To NQ 

                    Ptxt1 = sr.ReadLine() 

                    Vx4(NL - i11, i - 1, it, 5) = Val(Ptxt1) 'Q fifth block 

                Next 

            Next 

            sr.Close() 

        Next 

    End Sub 

 

 

Reading vorticity field: 
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    Sub Vort() 

        Me.Text = "Reading vorticity field" 

        For it = 0 To nt - 1 

            it1 = t0 + it * dt 

            PNameFileM = Ptxt2 & Ptxt3 & "\" & it1 & "\vorticity" 

            Dim sr As StreamReader = New StreamReader(PNameFileM) 

            Do While Ptxt1 <> nn 

                Ptxt1 = sr.ReadLine() 

            Loop 

            Ptxt1 = sr.ReadLine() 'ready to begin with useful data 

            For i10 = 0 To 3 'first 4 blocks 

                For i = 1 To NR 

                    For i11 = 1 To NQ 

                        Ptxt1 = sr.ReadLine() 

                        VortComp() 

                        Vx(i10, i11 - 1, i - 1, it, 6) = u1v 

                        Vx(i10, i11 - 1, i - 1, it, 7) = u2v 

                        Vx(i10, i11 - 1, i - 1, it, 8) = u3v 

                        Vx(i10, i11 - 1, i - 1, it, 9) = uuv 

                        If it = 0 And i10 = 0 And i = 1 And i11 = 1 Then 

                            u1min(6) = u1v : u1max(6) = u1v 

                            u1min(7) = u2v : u1max(7) = u2v 

                            u1min(8) = u3v : u1max(8) = u3v 

                            u1min(9) = uuv : u1max(9) = uuv 

                        End If 

                    Next 

                Next 

            Next i10 

            'fifth block 

            For i11 = 1 To NL 

                For i = 1 To NQ 

                    Ptxt1 = sr.ReadLine() 

                    VortComp() 

                    Vx4(NL - i11, i - 1, it, 6) = u1v 

                    Vx4(NL - i11, i - 1, it, 7) = u2v 

                    Vx4(NL - i11, i - 1, it, 8) = u3v 

                    Vx4(NL - i11, i - 1, it, 9) = uuv 

                Next 

            Next 

            sr.Close() 

        Next 

        Me.Text = Ptxt6 

    End Sub 

 

Calculating Q, 3 different approaches, block 4: 

    Sub Qbb() 

        'Must select proper equation to calculate Q=Vx4b(i11 - 1, i - 1, it) 

        Me.Text = "Calculating Qbb (own)" 

        For it = 0 To nt - 1 

            'fifth block 

            For i11 = 2 To NL - 1  

                For i = 2 To NQ – 1 
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                    Qb0(0) = Vx4(i11 - 1 - 1, i - 1, it, 0) 'u left (u i-1,j) 

                    Qb0(1) = Vx4(i11 - 1 + 1, i - 1, it, 0) 'u right(u i+1,j) 

                    Qb0(2) = Vx4(i11 - 1, i - 2, it, 0) 'u bottom (u i,j-1) 

                    Qb0(3) = Vx4(i11 - 1, i, it, 0) 'u top (u i,j+1) 

                    Qb0(4) = Vx4(i11 - 1 - 1, i - 1, it, 1) 'v left (v i-1,j) 

                    Qb0(5) = Vx4(i11 - 1 + 1, i - 1, it, 1) 'v right(v i+1,j) 

                    Qb0(6) = Vx4(i11 - 1, i - 2, it, 1) 'v bottom (v i,j-1) 

                    Qb0(7) = Vx4(i11 - 1, i, it, 1) 'v top (v i,j+1) 

                    Qb0(8) = Vx4(i11 - 1, i - 1, it, 0) 'u (u i,j) 

                    Qb0(9) = Vx4(i11 - 1, i - 1, it, 1) 'v (v i,j) 

 

 

                    Qb1(0) = -((Qb0(1) - Qb0(0)) ^ 2) / 8 / dx ^ 2 

                    Qb1(1) = -(Qb0(3) - Qb0(2)) * (Qb0(5) - Qb0(4)) / 4 

                                                                    / dx ^ 2 

                    Qb1(2) = -((Qb0(7) - Qb0(6)) ^ 2) / 8 / dx ^ 2 

                    'Vx4b(i11 - 1, i - 1, it) = Qb1(0) + Qb1(1) + Qb1(2) 

                    '***this MATCHES perfectly with OpenFoam 

                    'central difference and eqn Q=[-.5(dudx)2-dvdx.dudy- 

                                            .5(dvdy)2], equations(3.35)(3.49) 

 

                    Qb1(0) = (Qb0(1) - Qb0(0)) * (Qb0(7) - Qb0(6)) / 4  

                                                                   / dx ^ 2 

                    Qb1(1) = (Qb0(3) - Qb0(2)) * (Qb0(5) - Qb0(4)) / 4 

                                                                   / dx ^ 2 

                    'Vx4b(i11 - 1, i - 1, it) = Qb1(0) - Qb1(1) 

                    '***this MATCHES perfectly with OpenFoam 

                    'central difference and eqn Q=(dudx.dvdy-dvdx.dudy) 

                                                        Equations(3.36)(3.52) 

 

                    Qb1(0) = (Qb0(1) - Qb0(8)) * (Qb0(7) - Qb0(9)) / dx ^ 2 

                    Qb1(1) = (Qb0(3) - Qb0(8)) * (Qb0(5) - Qb0(9)) / dx ^ 2 

                    'Vx4b(i11 - 1, i - 1, it) = Qb1(0) - Qb1(1) 

                    '***this is almost the same as OpenFoam 

                    'forward difference and eqn Q=(dudx.dvdy-dvdx.dudy)   

                                                              Equation (3.36) 

'** ** ** central difference and eqn Q=(-.5d2u2dx2-

.5d2v2dy2-d2uvdxdy)  

                                                        Equations(3.37)(3.54) 

                    Qb0(0) = Vx4(i11 - 1 - 1, i - 1, it, 0) 'u left (u i-1,j) 

                    Qb0(1) = Vx4(i11 - 1 + 1, i - 1, it, 0) 'u right(u i+1,j) 

                    Qb0(2) = Vx4(i11 - 1, i - 2, it, 0) 'u bottom (u i,j-1) 

                    Qb0(3) = Vx4(i11 - 1, i, it, 0) 'u top (u i,j+1) 

                    Qb0(4) = Vx4(i11 - 1 - 1, i - 1, it, 1) 'v left (v i-1,j) 

                    Qb0(5) = Vx4(i11 - 1 + 1, i - 1, it, 1) 'v right(v i+1,j) 

                    Qb0(6) = Vx4(i11 - 1, i - 2, it, 1) 'v bottom (v i,j-1) 

                    Qb0(7) = Vx4(i11 - 1, i, it, 1) 'v top (v i,j+1) 

                    '** ** ** continue 

                    Qb0(8) = Vx4(i11 - 1, i - 1, it, 0) 'u (u i,j) 

                    Qb0(9) = Vx4(i11 - 1, i - 1, it, 1) 'v (v i,j) 

                    '** ** ** continue 

                    Qb0(10) = Vx4(i11 - 1 + 1, i, it, 0) 'u (u i+1,j+1) 

                    Qb0(11) = Vx4(i11 - 1 - 1, i, it, 0) 'u (u i-1,j+1) 

                    Qb0(12) = Vx4(i11 - 1 - 1, i - 2, it, 0) 'u (u i-1,j-1) 

                    Qb0(13) = Vx4(i11 - 1 + 1, i - 2, it, 0) 'u (u i+1,j-1) 

                    Qb0(14) = Vx4(i11 - 1 + 1, i, it, 1) 'v (v i+1,j+1) 

                    Qb0(15) = Vx4(i11 - 1 - 1, i, it, 1) 'v (v i-1,j+1) 
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                    Qb0(16) = Vx4(i11 - 1 - 1, i - 2, it, 1) 'v (v i-1,j-1) 

                    Qb0(17) = Vx4(i11 - 1 + 1, i - 2, it, 1) 'v (v i+1,j-1) 

                    '** ** ** continue 

                    Qb0(18) = (Qb0(8) + Qb0(10) + Qb0(3) + Qb0(1)) / 4  

                                                     'u (u i+1/2,j+1/2) 

                    Qb0(19) = (Qb0(8) + Qb0(11) + Qb0(3) + Qb0(0)) / 4  

                                                     'u (u i-1/2,j+1/2) 

                    Qb0(20) = (Qb0(8) + Qb0(12) + Qb0(2) + Qb0(0)) / 4 

                                                     'u (u i-1/2,j-1/2) 

                    Qb0(21) = (Qb0(8) + Qb0(13) + Qb0(2) + Qb0(1)) / 4 

                                                     'u (u i+1/2,j-1/2) 

                    Qb0(22) = (Qb0(9) + Qb0(14) + Qb0(7) + Qb0(5)) / 4 

                                                     'v (v i+1/2,j+1/2) 

                    Qb0(23) = (Qb0(9) + Qb0(15) + Qb0(7) + Qb0(4)) / 4 

                                                     'v (v i-1/2,j+1/2) 

                    Qb0(24) = (Qb0(9) + Qb0(16) + Qb0(6) + Qb0(4)) / 4 

                                                     'v (v i-1/2,j-1/2) 

                    Qb0(25) = (Qb0(9) + Qb0(17) + Qb0(6) + Qb0(5)) / 4 

                                                     'v (v i+1/2,j-1/2) 

                    '** ** ** continue 

                    '** ** ** Sum of a2Q 

                    Qb2(0) = 0.5 * Qb0(1) ^ 2 + 0.5 * Qb0(0) ^ 2 - Qb0(8) ^ 2 

                    Qb2(1) = 0.5 * Qb0(7) ^ 2 + 0.5 * Qb0(6) ^ 2 - Qb0(9) ^ 2 

                    Qb2(2) = Qb0(18) * Qb0(22) 

                    Qb2(3) = -Qb0(19) * Qb0(23) 

                    Qb2(4) = Qb0(20) * Qb0(24) 

                    Qb2(5) = -Qb0(21) * Qb0(25) 

                    '** ** ** continue 

                    Qb2(6) = -Qb2(0) - Qb2(1) - Qb2(2) - Qb2(3) - Qb2(4) –  

                                                                     Qb2(5) 

                    '** ** ** continue 

                    'Vx4b(i11 - 1, i - 1, it) = Qb2(6) / dx ^ 2 

                    '** ** ** end 

 

                    If Vx4b(i11 - 1, i - 1, it) > u1max(5) Then 

                                         u1max(5) = Vx4b(NL - i11, i - 1, it) 

                    If Vx4b(i11 - 1, i - 1, it) < u1min(5) Then 

                                         u1min(5) = Vx4b(NL - i11, i - 1, it) 

 

                Next 

            Next 

        Next 

        Me.Text = Ptxt6 

    End Sub 

 

General geometry: 

    Sub Geom() 'initial calculations for the grid geometry around the  

                                                 cylinder (0-3 blocks) 

        For ig = 0 To NQ 

            x1e = ig * dx 

            c = Math.Sqrt((W / 2 - x1e) ^ 2 + (W / 2) ^ 2) 

            x1i = W / 2 - rr * (W / 2 - x1e) / c 

            y1e = 0 
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            y1i = W / 2 - rr * W / 2 / c 

            x1(ig, 0) = x1e 

            y1(ig, 0) = y1e 

            Sfj = 0 : Sfj2 = 0 

            PG01 = 1 / f 'r first respect to last (0.25) 

            PG02 = (1 / PG01) ^ (1 / (NQ - 1)) 'r consecutive values 

            PG03 = (c - rr) * (1 - PG02) / (1 - PG02 ^ NQ)  'first value 

            For jg = 1 To NR ' j geom (nodes) 

                PG04 = PG03 * PG02 ^ (jg - 1) 'element by element 

                x1(ig, jg) = x1(ig, jg - 1) + PG04 * (W / 2 - x1e) / c 

                y1(ig, jg) = y1(ig, jg - 1) + PG04 * W / 2 / c 

            Next 

            '*****************taking the viscous force between the first row  

                                                            and the boundary 

            ddrFiner(ig) = ((x1(ig, NR) - x1(ig, NR - 1)) ^ 2 + (y1(ig, NR) – 

                                                   y1(ig, NR - 1)) ^ 2) ^ 0.5 

            '*****************taking the viscous force between the two first  

                                                    rows around the cylinder 

            ddrFiner(ig) = ((x1(ig, NR) - x1(ig, NR - 1)) ^ 2 + (y1(ig, NR) –  

                                                   y1(ig, NR - 1)) ^ 2) ^ 0.5 

        Next 

        For ig = 0 To NQ - 1 'cell center  

            For jg = 0 To NR - 1 

                x10(ig, jg) = (x1(ig, jg) + x1(ig + 1, jg) + x1(ig, jg + 1) + 

                                                      x1(ig + 1, jg + 1)) / 4 

                y10(ig, jg) = (y1(ig, jg) + y1(ig + 1, jg) + y1(ig, jg + 1) +  

                                                      y1(ig + 1, jg + 1)) / 4 

            Next 

        Next 

    End Sub 

 

Calculating and envisioning flow around a cylinder 

    Private Sub PictureBox1_Paint(ByVal sender As Object, ByVal e As  

               System.Windows.Forms.PaintEventArgs) Handles PictureBox1.Paint 

        QMaxMinInit() 

        Dim lPen3a As New Pen(Drawing.Color.FromArgb(255, 255, 0, 0), 1) 

        For blk = 0 To 3 

            For j = 0 To NR - 1 

                For i = 0 To NQ - 1 

                    ii = i : jj = j 

                    Dim lPen1a As New Pen(Drawing.Color.FromArgb(255, 0, 0,  

                                                                      0), 1) 

                    c1Filt = Int(255 * (Vx(blk, i, j, ttt, vvv) –  

                         u1filtmin(vvv)) / (u1filtmax(vvv) - u1filtmin(vvv))) 

                    If c1Filt <= PVto And c1Filt >= PVfrom Then 

                        c1 = Int(255 * (Vx(blk, i, j, ttt, vvv) - u1min(vvv))  

                                                 / (u1max(vvv) - u1min(vvv))) 

                        c2 = 255 - c1 

                        MoireEffect1() 

                        If CheckBox1.Checked Then MoireEffect2() 

                        Dim bBrush As New 

                          SolidBrush(Drawing.Color.FromArgb(255, c3, c2, c1)) 
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                        blk000 = blk : blk0123() 

 

                        Dim point1 As New Point(xx1, yy1) 

                        Dim point2 As New Point(xx2, yy2) 

                        Dim point3 As New Point(xx3, yy3) 

                        Dim point4 As New Point(xx4, yy4) 

                        Dim points As Point() = {point1, point2, point3,  

                                                                      point4} 

                        e.Graphics.FillPolygon(bBrush, points) 

                    End If 

                Next 

            Next 

        Next 

        For j = 0 To NQ - 1 

            For i = 0 To NL - 1 

                ii = i : jj = j 

                c1Filt = Int(255 * (Vx4(i, j, ttt, vvv) - u1filtmin(vvv)) /  

                                          (u1filtmax(vvv) - u1filtmin(vvv))) 

                If c1Filt <= PVto And c1Filt >= PVfrom Then 

                    c1 = Int(255 * (Vx4(i, j, ttt, vvv) - u1min(vvv)) /  

                                                  (u1max(vvv) - u1min(vvv))) 

 

                    c2 = 255 - c1 

                    MoireEffect1() 

                    If CheckBox1.Checked Then MoireEffect2() 

                    Dim bBrush As New SolidBrush(Drawing.Color.FromArgb(255,  

                                                                c3, c2, c1)) 

                    blk4() 

                    Dim rect As New Rectangle(xx1, yy1, zm, zm) 

                    e.Graphics.FillRectangle(bBrush, rect) 'draw no solid 

                End If 

            Next 

        Next 

        For blk = 0 To 3 

            For j = 0 To NR - 1 

                For i = 0 To NQ - 1 

                    ii = i : jj = j 

                    Dim lPen1a As New Pen(Drawing.Color.FromArgb(255, 0, 0, 

                                                                      0), 1) 

                    c1Filt = Int(255 * (Vx(blk, i, j, ttt, vvv2) – 

                      u1filtmin(vvv2)) / (u1filtmax(vvv2) - u1filtmin(vvv2))) 

                    If c1Filt <= PVto2 And c1Filt >= PVfrom2 Then 

                        c2 = Int(255 * (Vx(blk, i, j, ttt, vvv2) –  

                                  u1min(vvv2)) / (u1max(vvv2) - u1min(vvv2))) 

                        c1 = 255 - c2 

                        c2 = 200 

                        MoireEffect1() 

                        If CheckBox1.Checked Then MoireEffect22() 

                        Dim bBrush As New  

                         SolidBrush(Drawing.Color.FromArgb(trns, c2, c1, c3)) 

                        blk000 = blk : blk0123() 

                        Dim point1 As New Point(xx1, yy1) 

                        Dim point2 As New Point(xx2, yy2) 

                        Dim point3 As New Point(xx3, yy3) 

                        Dim point4 As New Point(xx4, yy4) 

                        Dim points As Point() = {point1, point2, point3, 

                                                                      point4} 



151 
 

                        e.Graphics.FillPolygon(bBrush, points) 

                    End If 

                Next 

            Next 

        Next 

        For j = 0 To NQ - 1 

            For i = 0 To NL - 1 

                ii = i : jj = j 

                c1Filt = Int(255 * (Vx4(i, j, ttt, vvv2) - u1filtmin(vvv2)) /  

                                         (u1filtmax(vvv2) - u1filtmin(vvv2))) 

                If c1Filt <= PVto2 And c1Filt >= PVfrom2 Then 

                    c2 = Int(255 * (Vx4(i, j, ttt, vvv2) - u1min(vvv2)) /  

                                                 (u1max(vvv2) - u1min(vvv2))) 

                    c1 = 255 - c2 

                    c2 = 200 

                    MoireEffect1() 

                    If CheckBox1.Checked Then MoireEffect22() 

                    Dim bBrush As New SolidBrush(Drawing.Color.FromArgb(trns,  

                                                                 c2, c1, c3)) 

                    blk4() 

                    Dim rect As New Rectangle(xx1, yy1, zm, zm) 

                    e.Graphics.FillRectangle(bBrush, rect) 'draw no solid 

                End If 

            Next 

        Next 

        'reference axis 

        e.Graphics.DrawLine(lPen3a, 2, zm * (NR - 1) + 2, zm * 10, zm * (NR –  

                                                                      1) + 2) 

        e.Graphics.DrawString("x", sfnt, Brushes.Red, zm * 10, zm * (NR - 1)  

                                                                    + 2 - 20) 

        e.Graphics.DrawLine(lPen3a, 2, zm * (NR - 1) + 2, 2, zm * (NR - 1 –  

                                                                     10) + 2) 

        e.Graphics.DrawString("y", sfnt, Brushes.Red, 2, zm * (NR - 1 - 10) +  

                                                                      2 - 20) 

 

        'DP.n/r fifth block integration  Note this is simplified into this:  

                                         /(W/NQ)*(W/NQ) quadrangular elements 

        DPsum01 = 0 : DPsum02 = 0 : DPsum03 = 0 : DPsum04 = 0 

        DPrsum01 = 0 : DPrsum02 = 0 : DPrsum03 = 0 : DPrsum04 = 0 

        DPsumCC = 0 : DPrsumCC = 0 

        Vel2 = Vx(3, 40, 1, 0, 0) 

 

        'contour integrals 

        If CheckBox9.Checked Or RadioButton21.Checked Or  

              RadioButton22.Checked Or RadioButton23.Checked Then 'draw point 

            Dim lPen2a As New Pen(Drawing.Color.FromArgb(255, 200, 50, 0), 1) 

            If Qx05 < NQ Then 'block 0123 

                If bl090 > NQ Then bl090 = NQ - 3 'NQ - 1 

                ii = bl050 : jj = bl090 

                If bl040 = 0 Then blk0() 

                If bl040 = 1 Then blk1() 

                If bl040 = 2 Then blk2() 

                If bl040 = 3 Then blk3() 

                Qx05 = (xx1 + xx2 + xx3 + xx4) / 4 / zm 

                Qy05 = (yy1 + yy2 + yy3 + yy4) / 4 / zm 

                Dim bBrush As New SolidBrush(Drawing.Color.FromArgb(255, 255,  

                                                                       0, 0)) 
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                Dim point1 As New Point(xx1, yy1) 

                Dim point2 As New Point(xx2, yy2) 

                Dim point3 As New Point(xx3, yy3) 

                Dim point4 As New Point(xx4, yy4) 

                Dim points As Point() = {point1, point2, point3, point4} 

                e.Graphics.FillPolygon(bBrush, points) 

            End If 

            xx1 = zm * Qx05 - zm / 2 ' selected area from 

            yy1 = zm * Qy05 - zm / 2 

            xx2 = zm 'selected area width and height 

            yy2 = zm 

            e.Graphics.DrawRectangle(lPen2a, xx1, yy1, xx2, yy2) 'draw the  

                                                                        point 

        End If 

        If RadioButton23.Checked = False Then 'integration on rectangle 

            Qx030 = Qx03 

            Qy030 = Qy03 

            Qx040 = Qx04 

            Qy040 = Qy04 

        Else 'integration on the entire domain 

            Qx030 = 80 + 1 - 1 

            Qy030 = 1 

            Qx040 = 320 - 1 - Qx030 

            Qy040 = 80 - 2 

        End If 

        'left and right block 4 (contour integrals) 

        For j = Qy030 To Qy040 + Qy030 - 1 

            ii = Qx030 - NQ - 1 : jj = j 'ii is just outside at the left 

            blk4() 

            Qx01rrb() 

            Qx01rrbl() 

            Qx01rrc() 

            If Qrr02 <> 0 And Qrr <> 0 And Qrr01 <> 0 And Not                                

                           RadioButton23.Checked) And CheckBox7.Checked Then 

                DPsum01 = DPsum01 + 1 / 2 / pi * Math.Log(1 / Qrr02) * 

                          (Vx4(ii, NQ - 1 - j, ttt, 3) - Vx4(ii + 1, NQ - 1 –  

                          j, ttt, 3)) / (Vel2) ^ 2  'left (out-rect. inside  

                                                                     block 5) 

                DPrsum01 = DPrsum01 - 1 / 2 / pi * Vx4(ii, NQ - 1 - j, ttt,  

                          3) / (Vel2) ^ 2 * (Math.Log(1 / Qrr) - Math.Log(1 /  

                          Qrr01))  'left (out-rect. inside block 5th) 

                If CheckBox14.Checked Then 

                    Dim lPen2aa As New Pen(Drawing.Color.FromArgb(60, 200,  

                                                                250, 200), 1) 

                    e.Graphics.DrawLine(lPen2aa, Qx01r, Qy01b, Qx05 * zm,  

                                                       Qy05 * zm) 'draw lines 

                End If 

            End If 

            ii = Qx040 + Qx030 - NQ : jj = j 'ii is just outside at the right 

            blk4() 

            Qx01rrb() 

            Qx01rrbr() 

            Qx01rrc() 

            If Qrr02 <> 0 And Qrr <> 0 And Qrr01 <> 0 And CheckBox8.Checked                

                                                                        Then 

                DPsum02 = DPsum02 + 1 / 2 / pi * Math.Log(1 / Qrr02) *  

                        (Vx4(ii, NQ - 1 - j, ttt, 3) - Vx4(ii - 1, NQ - 1 –  
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                        j, ttt, 3)) / (Vel2) ^ 2  'right (out-rect. inside  

                        block 5th) 

                DPrsum02 = DPrsum02 - 1 / 2 / pi * Vx4(ii, NQ - 1 - j, ttt, 

                        3) / (Vel2) ^ 2 * (Math.Log(1 / Qrr) - Math.Log(1 /  

                        Qrr01))  'right (out-rect. inside block 5th) 

                If CheckBox15.Checked Then 

                    Dim lPen2aa As New Pen(Drawing.Color.FromArgb(60, 200,  

                                                              250, 200), 1) 

                    e.Graphics.DrawLine(lPen2aa, Qx01r, Qy01b, Qx05 * zm,  

                                                     Qy05 * zm) 'draw lines 

                End If 

            End If 

        Next 

 

        'top and bottom block 4 (contour integrals) 

        For i = Qx030 - NQ To Qx040 + Qx030 - NQ - 1 

            ii = i : jj = Qy030 - 1 'jj is just outside at the top 

            blk4() 

            Qx01rrb() 

            Qx01rrbt() 'top 

            Qx01rrc() 

            If Qrr02 <> 0 And Qrr <> 0 And Qrr01 <> 0 And CheckBox10.Checked  

                                                                        Then 

                DPsum03 = DPsum03 + 1 / 2 / pi * Math.Log(1 / Qrr02) *  

                         (Vx4(i, NQ - 1 - jj, ttt, 3) - Vx4(i, NQ - 1 - (jj +  

                         1), ttt, 3)) / (Vel2) ^ 2  'bottom (block 5th) 

                DPrsum03 = DPrsum03 - 1 / 2 / pi * Vx4(i, NQ - 1 - jj, ttt,  

                         3) / (Vel2) ^ 2 * (Math.Log(1 / Qrr) - Math.Log(1 /  

                         Qrr01))  'bottom (block 5) 

                If CheckBox16.Checked Then 

                    Dim lPen2aa As New Pen(Drawing.Color.FromArgb(60, 200, 

                                                                250, 200), 1) 

                    e.Graphics.DrawLine(lPen2aa, Qx01r, Qy01b, Qx05 * zm,  

                                                       Qy05 * zm) 'draw lines 

                End If 

            End If 

            ii = i : jj = Qy040 + Qy030 'jj is just outside at the bottom 

            blk4() 

            Qx01rrb() 

            Qx01rrbb() 'bottom 

            Qx01rrc() 

            If Qrr02 <> 0 And Qrr <> 0 And Qrr01 <> 0 And CheckBox11.Checked  

                                                                        Then 

                DPsum04 = DPsum04 + 1 / 2 / pi * Math.Log(1 / Qrr02) * 

                         (Vx4(i, NQ - 1 - jj, ttt, 3) - Vx4(i, NQ - 1 - (jj – 

                         1), ttt, 3)) / (Vel2) ^ 2  'bottom (block 5th) 

                DPrsum04 = DPrsum04 - 1 / 2 / pi * Vx4(i, NQ - 1 - jj, ttt, 

                         3) / (Vel2) ^ 2 * (Math.Log(1 / Qrr) - Math.Log(1 /  

                         Qrr01))  'bottom (block 5th) 

                If CheckBox17.Checked Then 

                    Dim lPen2aa As New Pen(Drawing.Color.FromArgb(60, 200, 

                                                                250, 200), 1) 

                    e.Graphics.DrawLine(lPen2aa, Qx01r, Qy01b, Qx05 * zm,  

                                                       Qy05 * zm) 'draw lines 

                End If 

            End If 

        Next 
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        'blocks 0,1,2,3 (countour integrals) 

        For blk = 0 To 3 'on cylinder 

            For i = 0 To NQ - 1 

                ii = i : jj = NQ - 1 

                blk000 = blk : blk0123() 

                xc1 = (xx1 + xx2 + xx3 + xx4) / 4 

                yc1 = (yy1 + yy2 + yy3 + yy4) / 4 

                dL1 = ((xx1 - xx2) ^ 2 + (yy1 - yy2) ^ 2) ^ 0.5 

                xc3 = (xx1 + xx2) / 2 : yc3 = (yy1 + yy2) / 2 

                ii = i : jj = NQ - 2 

                blk000 = blk : blk0123() 

                xc2 = (xx1 + xx2 + xx3 + xx4) / 4 

                yc2 = (yy1 + yy2 + yy3 + yy4) / 4 

                dr1 = ((xc1 - xc2) ^ 2 + (yc1 - yc2) ^ 2) ^ 0.5 

                Qrr = dx * Math.Sqrt((xc1 / zm - Qx05) ^ 2 + (yc1 / zm –  

                         Qy05) ^ 2) '(outside cell) distance to the point [m] 

                Qrr01 = dx * Math.Sqrt((xc2 / zm - Qx05) ^ 2 + (yc2 / zm –  

                         Qy05) ^ 2) '(inside cell) distance to the point [m] 

                Qx01rrc() 

                If Qrr02 <> 0 And Qrr <> 0 And Qrr01 <> 0 And  

                           CheckBox12.Checked And RadioButton23.Checked Then 

                    DPsumCC = DPsumCC + 1 / 2 / pi * Math.Log(1 / Qrr02) *  

                           (Vx(blk, i, NQ - 1, ttt, 3) - Vx(blk, i, NQ - 2,  

                           ttt, 3)) / (Vel2) ^ 2 / dr1 * dL1  'cylinder 

                    DPrsumCC = DPrsumCC - 1 / 2 / pi * Vx(blk, i, NQ - 1, 

                           ttt, 3) / (Vel2) ^ 2 * (Math.Log(1 / Qrr) –  

                           Math.Log(1 / Qrr01)) / dr1 * dL1  'cylinder 

                    If CheckBox18.Checked Then 

                        Dim lPen2aa As New Pen(Drawing.Color.FromArgb(60,  

                                                           200, 250, 200), 1) 

                        e.Graphics.DrawLine(lPen2aa, xc1, yc1, Qx05 * zm,  

                                                       Qy05 * zm) 'draw lines 

                    End If 

                End If 

            Next 

        Next 

        For i = 0 To NQ - 1 

            'bottom 

            ii = i : jj = 0 

            blk0() 'bottom just outside 

            xc1 = (xx1 + xx2 + xx3 + xx4) / 4 

            yc1 = (yy1 + yy2 + yy3 + yy4) / 4 

            ii = i : jj = 1 

            blk0() 'bottom just inside (fixed) 

            xc2 = (xx1 + xx2 + xx3 + xx4) / 4 

            yc2 = (yy1 + yy2 + yy3 + yy4) / 4 

            dL1 = ((xx1 - xx2) ^ 2 + (yy1 - yy2) ^ 2) ^ 0.5 'horizontal  

                                                               distance 

            xc3 = (xx1 + xx2) / 2 : yc3 = (yy1 + yy2) / 2 

            If i < NQ / 2 Then 

                ii = i + 1 : jj = 0 

                blk0() 'bottom just outside to center value 

                xc1b = (xx1 + xx2 + xx3 + xx4) / 4 

                yc1b = (yy1 + yy2 + yy3 + yy4) / 4 

                f1 = (xc1b - xc2) / (xc1b - xc1) 

                P001 = f1 * Vx(0, i, 0, ttt, 3) + (1 - f1) * Vx(0, i + 1, 0,  

                                          ttt, 3) 'replace external pressure 
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            Else 

                ii = i - 1 : jj = 0 

                blk0() 'bottom just outside to center value 

                xc1b = (xx1 + xx2 + xx3 + xx4) / 4 

                yc1b = (yy1 + yy2 + yy3 + yy4) / 4 

                f1 = (xc1b - xc2) / (xc1b - xc1) 

                P001 = f1 * Vx(0, i, 0, ttt, 3) + (1 - f1) * Vx(0, i - 1, 0,  

                                          ttt, 3) 'replace external pressure 

            End If 

            dr1 = Math.Abs(yc1 - yc2) ' just vertical distance 

            Qrr = dx * Math.Sqrt((xc2 / zm - Qx05) ^ 2 + (yc1 / zm - Qy05) ^  

                           2) '(outside moved cell) distance to the point [m] 

            Qrr01 = dx * Math.Sqrt((xc2 / zm - Qx05) ^ 2 + (yc2 / zm - Qy05)  

                                ^ 2) '(inside cell) distance to the point [m] 

            Qx01rrc() 

            If Qrr02 <> 0 And Qrr <> 0 And Qrr01 <> 0 And CheckBox11.Checked  

                                              And RadioButton23.Checked Then 

                DPsum04 = DPsum04 + 1 / 2 / pi * Math.Log(1 / Qrr02) * (P001  

                           - Vx(0, i, 1, ttt, 3)) / (Vel2) ^ 2 / dr1 * dL1   

                           'bottom square 

                DPrsum04 = DPrsum04 - 1 / 2 / pi * P001 / (Vel2) ^ 2 *  

                           (Math.Log(1 / Qrr) - Math.Log(1 / Qrr01)) / dr1 *  

                           dL1  'bottom square 

                If CheckBox17.Checked Then 

                    Dim lPen2aa As New Pen(Drawing.Color.FromArgb(60, 200,  

                                                                250, 200), 1) 

                    e.Graphics.DrawLine(lPen2aa, xc2, yc1, Qx05 * zm, Qy05 *  

                                                              zm) 'draw lines 

                End If 

            End If 

            'top 

            ii = i : jj = 0 

            blk2() 'top just outside 

            xc1 = (xx1 + xx2 + xx3 + xx4) / 4 

            yc1 = (yy1 + yy2 + yy3 + yy4) / 4 

            ii = i : jj = 1 

            blk2() 'top just inside (fixed) 

            xc2 = (xx1 + xx2 + xx3 + xx4) / 4 

            yc2 = (yy1 + yy2 + yy3 + yy4) / 4 

            dL1 = ((xx1 - xx2) ^ 2 + (yy1 - yy2) ^ 2) ^ 0.5 

            xc3 = (xx1 + xx2) / 2 : yc3 = (yy1 + yy2) / 2 

            If i < NQ / 2 Then 

                ii = i + 1 : jj = 0 

                blk2() 'top just outside (to center value) 

                xc1b = (xx1 + xx2 + xx3 + xx4) / 4 

                yc1b = (yy1 + yy2 + yy3 + yy4) / 4 

                f1 = (xc1b - xc2) / (xc1b - xc1) 

                P001 = f1 * Vx(2, i, 0, ttt, 3) + (1 - f1) * Vx(2, i + 1, 0, 

                                           ttt, 3) 'replace external pressure 

            Else 

                ii = i - 1 : jj = 0 

                blk2() 'top just outside (to center value) 

                xc1b = (xx1 + xx2 + xx3 + xx4) / 4 

                yc1b = (yy1 + yy2 + yy3 + yy4) / 4 

                f1 = (xc1b - xc2) / (xc1b - xc1) 

                P001 = f1 * Vx(2, i, 0, ttt, 3) + (1 - f1) * Vx(2, i - 1, 0, 

                                          ttt, 3) 'replace external pressure 
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            End If 

            dr1 = Math.Abs(yc1 - yc2) ' just vertical distance 

            Qrr = dx * Math.Sqrt((xc2 / zm - Qx05) ^ 2 + (yc1 / zm - Qy05) ^ 

                           2) '(outside moved cell) distance to the point [m] 

            Qrr01 = dx * Math.Sqrt((xc2 / zm - Qx05) ^ 2 + (yc2 / zm - Qy05)   

                                ^ 2) '(inside cell) distance to the point [m] 

 

            Qx01rrc() 

            If Qrr02 <> 0 And Qrr <> 0 And Qrr01 <> 0 And CheckBox10.Checked  

                                              And RadioButton23.Checked Then 

                DPsum03 = DPsum03 + 1 / 2 / pi * Math.Log(1 / Qrr02) * (P001  

                           - Vx(2, i, 1, ttt, 3)) / (Vel2) ^ 2 / dr1 * dL1 

                           'top square 

                DPrsum03 = DPrsum03 - 1 / 2 / pi * P001 / (Vel2) ^ 2 * 

                           (Math.Log(1 / Qrr) - Math.Log(1 / Qrr01)) / dr1 * 

                           dL1  'top square 

                If CheckBox16.Checked Then 

                    Dim lPen2aa As New Pen(Drawing.Color.FromArgb(60, 200, 

                                                                250, 200), 1) 

                    e.Graphics.DrawLine(lPen2aa, xc2, yc1, Qx05 * zm, Qy05 *  

                                                              zm) 'draw lines 

                End If 

            End If 

            'left 

            ii = i : jj = 0 

            blk3() 'left just outside 

            xc1 = (xx1 + xx2 + xx3 + xx4) / 4 

            yc1 = (yy1 + yy2 + yy3 + yy4) / 4 

            ii = i : jj = 1 

            blk3() 'left just inside (fixed) 

            xc2 = (xx1 + xx2 + xx3 + xx4) / 4 

            yc2 = (yy1 + yy2 + yy3 + yy4) / 4 

            dL1 = ((xx1 - xx2) ^ 2 + (yy1 - yy2) ^ 2) ^ 0.5  

            xc3 = (xx1 + xx2) / 2 : yc3 = (yy1 + yy2) / 2 

            If i < NQ / 2 Then 

                ii = i + 1 : jj = 0 

                blk3() 'left just outside (to center value) 

                xc1b = (xx1 + xx2 + xx3 + xx4) / 4 

                yc1b = (yy1 + yy2 + yy3 + yy4) / 4 

                f1 = (yc1b - yc2) / (yc1b - yc1) 

                P001 = f1 * Vx(3, i, 0, ttt, 3) + (1 - f1) * Vx(3, i + 1, 0, 

                                           ttt, 3) 'replace external pressure 

            Else 

                ii = i - 1 : jj = 0 

                blk3() 'left just outside (to center value) 

                xc1b = (xx1 + xx2 + xx3 + xx4) / 4 

                yc1b = (yy1 + yy2 + yy3 + yy4) / 4 

                f1 = (yc1b - yc2) / (yc1b - yc1) 

                P001 = f1 * Vx(3, i, 0, ttt, 3) + (1 - f1) * Vx(3, i - 1, 0,  

                                           ttt, 3) 'replace external pressure 

            End If 

            dr1 = Math.Abs(xc1 - xc2) ' just horizontal distance 

            Qrr = dx * Math.Sqrt((xc1 / zm - Qx05) ^ 2 + (yc2 / zm - Qy05) ^ 

                           2) '(outside moved cell) distance to the point [m] 

            Qrr01 = dx * Math.Sqrt((xc2 / zm - Qx05) ^ 2 + (yc2 / zm - Qy05) 

                                ^ 2) '(inside cell) distance to the point [m] 
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            Qx01rrc() 

            If Qrr02 <> 0 And Qrr <> 0 And Qrr01 <> 0 And CheckBox7.Checked  

                                               And RadioButton23.Checked Then 

                DPsum01 = DPsum01 + 1 / 2 / pi * Math.Log(1 / Qrr02) * (P001                

                           - Vx(3, i, 1, ttt, 3)) / (Vel2) ^ 2 / dr1 * dL1   

                           'left square 

                DPrsum01 = DPrsum01 - 1 / 2 / pi * P001 / (Vel2) ^ 2 *  

                           (Math.Log(1 / Qrr) - Math.Log(1 / Qrr01)) / dr1 *  

                           dL1  'left square 

                If CheckBox14.Checked Then 

                    Dim lPen2aa As New Pen(Drawing.Color.FromArgb(60, 200,  

                           250, 200), 1) 

                    e.Graphics.DrawLine(lPen2aa, xc1, yc2, Qx05 * zm, Qy05 *  

                           zm) 'draw lines 

                End If 

            End If 

        Next 

        DPsum05 = DPsum01 + DPsum02 + DPsum03 + DPsum04 

        DPrsum05 = DPrsum01 + DPrsum02 + DPrsum03 + DPrsum04 

 

        'Q integration (integral over the rectangular or the entire domain) 

        If RadioButton21.Checked Or RadioButton22.Checked Then 'rectangle 

            Dim lPen2a As New Pen(Drawing.Color.FromArgb(255, 200, 50, 0), 1) 

            xx1 = zm * Qx03 ' selected area from... 

            yy1 = zm * Qy03 

            xx2 = zm * Qx04 'selected area width and height 

            yy2 = zm * Qy04 

            e.Graphics.DrawRectangle(lPen2a, xx1, yy1, xx2, yy2) 'rectangle 

        End If 

 

        If CheckBox9.Checked Then 

            Qsum03 = 0 'Sum of Element Areas at the intersected area 

            Qsum04 = 0 'Sum of Q/Qrr*dA summation at the intersected area 

 

            For blk = 0 To 3 

                For j = 0 To NR - 1 

                    For i = 0 To NQ - 1 

                        ii = i : jj = j 

                        blk000 = blk : blk0123() 

 

                        TF = RadioButton23.Checked 'draw border (entire case) 

                        TF = (TF And (j < 1 Or j > 78) And blk <> 1) Or (TF  

                             And (j > 78 Or (j < 1 And (i < 1 Or i > 78)))  

                             And blk = 1) 

                        If TF Then 

                            Dim lPen2aa As New  

                              Pen(Drawing.Color.FromArgb(255, 200, 50, 0), 1) 

                            Dim point1 As New Point(xx1, yy1) 

                            Dim point2 As New Point(xx2, yy2) 

                            Dim point3 As New Point(xx3, yy3) 

                            Dim point4 As New Point(xx4, yy4) 

                            Dim points As Point() = {point1, point2, point3,   

                                                                      point4} 

                            e.Graphics.DrawPolygon(lPen2aa, points) 'draw  

                                                         border (entire case) 

                        End If 
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                        xa1 = (xx1 + xx2) / 2 : xa2 = (xx2 + xx3) / 2 : xa3 =             

                                      (xx3 + xx4) / 2 : xa4 = (xx4 + xx1) / 2 

                        ya1 = (yy1 + yy2) / 2 : ya2 = (yy2 + yy3) / 2 : ya3 =  

                                      (yy3 + yy4) / 2 : ya4 = (yy4 + yy1) / 2 

                        ha2 = ((xa4 - xa2) ^ 2 + (ya4 - ya2) ^ 2) ^ 0.5 

                        'perpendicular distance: 

                        ha1 = Math.Abs((xa4 - xa2) * (ya2 - ya3) - (xa2 –  

                                      xa3) * (ya4 - ya2)) / ((xa4 - xa2) ^ 2  

                                      + (ya4 - ya2) ^ 2) ^ 0.5 

                        ha1 = ha1 + Math.Abs((xa4 - xa2) * (ya2 - ya1) - (xa2  

                                      - xa1) * (ya4 - ya2)) / ((xa4 - xa2) ^  

                                      2 + (ya4 - ya2) ^ 2) ^ 0.5 

                        Q01 = (dx / zm) ^ 2 * ha1 * ha2 'Area [m2] 

                        Q01 = Q01 / (2 * rr) ^ 2 ' dimensionless area 

                        Q02 = Vx(blk, i, j, ttt, 3) 'Pressure 

                        Q02 = Q02 / Vel2 ^ 2 'Non-D Pressure 

                        Q03 = Vx(blk, i, j, ttt, 5) 'Q 

                        Q03 = Q03 / Vel2 ^ 2 * (2 * rr) ^ 2 'No dimensional Q 

                        Qx01p = (xx1 + xx2 + xx3 + xx4) / 4 'center polyg app 

                        Qy01p = (yy1 + yy2 + yy3 + yy4) / 4 

                        rp = ((yy2 - yy3) ^ 2 + (xx2 - xx3) ^ 2) ^ 0.5 / 2  

                                                    'approx. radio of polygon 

                        Qx02 = zm * Qx05 - zm / 2 

                        Qy02 = zm * Qy05 - zm / 2 

                        'Qx02b =  zm * Qx05 + 2 * zm 

                        'Qy02b = zm * Qy05 + 2 * zm 

                        Qx02b = zm * Qx05 + zm / 2 

                        Qy02b = zm * Qy05 + zm / 2 

                        rp2 = (((Qy02 + Qy02b) / 2 - Qy01p) ^ 2 + ((Qx02 +  

                                                x02b) / 2 - Qx01p) ^ 2) ^ 0.5 

                        TF2 = rp2 < 0.1 * rp 

                        If TF2 Then 'point itself then no Q summation here 

                            Qpp0 = Q02 'Non-D pressure at the point 

                        Else 

                            c1Filt = Int(255 * (Vx(blk, i, j, ttt, vvv) – 

                                      u1filtmin(vvv)) / (u1filtmax(vvv) –  

                                      u1filtmin(vvv))) 

                            TF3 = c1Filt <= PVto And c1Filt >= PVfrom And  

                                      RadioButton23.Checked = True And 

                                      CheckBox6.Checked 

                            TF3 = TF3 And (j <> 0 Or (blk = 1 And Not ((i = 0 

                                      And j = 0) Or (i = NQ - 1 And j = 0)))) 

                            If TF3 Then 

                                Qrr = dx * Math.Sqrt((Qx01p / zm - Qx05) ^ 2       

                                      + (Qy01p / zm - Qy05) ^ 2) 'distance to              

                                      the point [m] 

                                Qrr = Qrr / (2 * rr) ' dimensionless radius 

                                Qsum03 = Qsum03 + Q01 'non-D Area summation 

                                Qsum04 = Qsum04 - 1 / pi * Q03 * Math.Log(1 /  

                                      Qrr) * Q01 '1/pi*Q*ln(1/Qrr)*dA non-D          

                                                                    summation 

                                If CheckBox13.Checked Then 

                                    Dim lPen2aa As New  

                                              Pen(Drawing.Color.FromArgb(100,      

                                                           200, 250, 100), 1) 

                                    e.Graphics.DrawRectangle(lPen2aa,  

                                       Int(Qx01p - 1), Int(Qy01p - 1), 2, 2)  
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                                       'draw rectangles                                     

                                End If 

                                MinMax001() 

                            End If 

                        End If 

                    Next 

                Next 

            Next 

            For j = 0 To NQ - 1 

                For i = 0 To NL - 1 

                    Vel2 = Vx(3, 40, 1, 0, 0) 

                    ii = i : jj = j 

                    blk4() 

                    TF = RadioButton23.Checked 

                    'TF = TF And (i > 237 Or j < 2 Or j > 77) 

                    TF = TF And (i > 238 Or j < 1 Or j > 78) 

                    If TF Or CheckBox19.Checked Then 

                        Dim lPen2aa As New Pen(Drawing.Color.FromArgb(255, 

                                                              200, 50, 0), 1) 

                        e.Graphics.DrawRectangle(lPen2aa, xx1, yy1, zm, zm)  

                                                   'draw border (entire case) 

                    End If 

                    Q01 = dx ^ 2  'Area [m2] 

                    Q01 = Q01 / (2 * rr) ^ 2 ' dimensionless area 

                    Q02 = Vx4(i, j, ttt, 3) 'Pressure 

                    Q02 = Q02 / Vel2 ^ 2 'Non-D Pressure 

                    '*******************veryimportant****************** 

                    Q03 = Vx4(i, j, ttt, 5) 'Q from OpenFoam 

                    'Q03 = Vx4b(i, j, ttt) 'Q own = Q OpenFoam  

                    '*******************veryimportant****************** 

                    Q03 = Q03 / Vel2 ^ 2 * (2 * rr) ^ 2 ' dimensionless Q 

                    Qx01center() 

                    Qx02 = zm * Qx05 - zm / 2 

                    Qy02 = zm * Qy05 - zm / 2 

                    'Qx02b = zm * Qx05 + 2 * zm 

                    'Qy02b = zm * Qy05 + 2 * zm 

                    Qx02b = zm * Qx05 + zm / 2 

                    Qy02b = zm * Qy05 + zm / 2 

                    If Qx01r >= Qx02 And Qx01r < Qx02b And Qy01r >= Qy02 And  

                                        Qy01r < Qy02b Then 'just in the point 

                        z01 = 0 

                        Qpp0 = Q02 'Non-D pressure at the point 

                    Else 

                        z01 = 1 'Sum Q at this location 

                    End If 

                    If Not (RadioButton23.Checked) Then 'integration of Q in  

                                                                the rectangle 

                        Qx02 = zm * Qx03 

                        Qy02 = zm * Qy03 

                        Qx02b = zm * (Qx03 + Qx04) 

                        Qy02b = zm * (Qy03 + Qy04) 

                    Else 'integration of Q in the entire domain 

                        Qx02 = zm * NQ 

                        Qy02 = zm 

                        Qx02b = zm * (NL - 1 + NQ) 

                        Qy02b = zm * (NQ - 1) 

                    End If 
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                    If Qx01r >= Qx02 And Qx01r < Qx02b And Qy01r >= Qy02 And  

                                                          Qy01r < Qy02b Then 

                        c1Filt = Int(255 * (Vx4(i, j, ttt, vvv) –  

                                 u1filtmin(vvv)) / (u1filtmax(vvv) –  

                                 u1filtmin(vvv))) 

                        If c1Filt <= PVto And c1Filt >= PVfrom And z01 = 1  

                                                   And CheckBox6.Checked Then 

                            Qrr = dx * Math.Sqrt((Qx01r / zm - Qx05) ^ 2 +  

                                 (Qy01r / zm - Qy05) ^ 2) 'distance to the  

                                                                    point [m] 

                            Qrr = Qrr / (2 * rr) ' dimensionless radius 

                            Qsum03 = Qsum03 + Q01 'non-D Area summation 

                            Qsum04 = Qsum04 - 1 / pi * Q03 * Math.Log(1 /  

                                  Qrr) * Q01 '1/pi*Q*ln(1/Qrr)*dA non-D sum 

                            If CheckBox13.Checked Then 

                                Dim lPen2aa As New  

                                          Pen(Drawing.Color.FromArgb(100,  

                                          200, 250, 100), 1) 

                                e.Graphics.DrawRectangle(lPen2aa, Int(Qx01r –  

                                          1), Int(Qy01r - 1), 2, 2) 'rect 

                            End If 

                            MinMax001() 

                        End If 

                    End If 

                Next 

            Next 

        End If 

 

        If CheckBox19.Checked Or CheckBox20.Checked Or CheckBox31.Checked  

                                     Then 'grid & velocity vector blk 0123 

            For blk = 0 To 3 

                For j = 0 To NR - 1 

                    For i = 0 To NQ - 1 

                        ii = i : jj = j 

                        blk000 = blk : blk0123() 

 

                        If CheckBox19.Checked Then 

                            Dim lPen2aa As New  

                                        Pen(Drawing.Color.FromArgb(105, 200, 

                                                                  50, 0), 1) 

                            Dim point1 As New Point(xx1, yy1) 

                            Dim point2 As New Point(xx2, yy2) 

                            Dim point3 As New Point(xx3, yy3) 

                            Dim point4 As New Point(xx4, yy4) 

                            Dim points As Point() = {point1, point2, point3, 

                                                    point4} 

                            e.Graphics.DrawPolygon(lPen2aa, points) 'grid 

                        End If 

                        Qx01p = (xx1 + xx2 + xx3 + xx4) / 4 'cent. polyg. app 

                        Qy01p = (yy1 + yy2 + yy3 + yy4) / 4 

                        If i / SclVvD = Int(i / SclVvD) And j / SclVvD =  

                                   Int(j / SclVvD) And (CheckBox20.Checked Or  

                                   CheckBox31.Checked) Then 'velocity vectors 

                            Vel3 = Vel2 * Vel3a / 100 

                            MagVel = ((Vx(blk, i, j, ttt, 0) - Vel3) ^ 2 + 

                                   Vx(blk, i, j, ttt, 1) ^ 2) ^ 0.5 + 0.00001 

                            xv1 = Qx01p + 1.5 * SclVv * zm * (Vx(blk, i, j,  
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                                                       ttt, 0) - Vel3) / Vel2 

                            yv1 = Qy01p - 1.5 * SclVv * zm * Vx(blk, i, j,  

                                                               ttt, 1) / Vel2 

                            xv2 = Qx01p + 3 * zm * (Vx(blk, i, j, ttt, 0) –  

                                                               Vel3) / MagVel 

                            yv2 = Qy01p - 3 * zm * Vx(blk, i, j, ttt, 1) /  

                                                                       MagVel 

                            Dim lPen4a As New Pen(Drawing.Color.FromArgb(200,  

                                                               255, 0, 0), 1) 

                            Dim lPen4b As New Pen(Drawing.Color.FromArgb(100,  

                                                             255, 150, 0), 1) 

                            Dim lPen4c As New Pen(Drawing.Color.FromArgb(200,  

                                                             0, 150, 255), 1) 

                            Dim cBrush As New  

                                     SolidBrush(Drawing.Color.FromArgb(200,  

                                                                255, 255, 0)) 

                            If CheckBox20.Checked Then 

                                e.Graphics.DrawEllipse(lPen4b, Qx01p - zm /  

                                           4, Qy01p - zm / 4, zm / 2, zm / 2) 

                                           'draw circle (blk 0123) 

                            End If 

                            If MagVel < CvgEddy And CheckBox31.Checked Then 

                                e.Graphics.FillEllipse(cBrush, Qx01p - zm /  

                                           4, Qy01p - zm / 4, zm / 2, zm / 2)  

                                           'draw circle (blk 0123) 

                            End If 

                            If MagVel * SclVv / 2 / Vel2 < 1 And  

                                                    CheckBox20.Checked Then 

                                e.Graphics.DrawLine(lPen4a, Qx01p, Qy01p,  

                                       xv1, yv1) 'draw scaled velocity vector 

                            Else 

                                If CheckBox20.Checked And Not  

                                                    CheckBox31.Checked Then 

                                    e.Graphics.DrawLine(lPen4c, Qx01p, Qy01p,  

                                              xv2, yv2) 'draw velocity vector 

                                End If 

                            End If 

                        End If 

                    Next 

                Next 

            Next 

            For j = 0 To NQ - 1 'grid & velocity vector blk 4 

                For i = 0 To NL - 1 

                    ii = i : jj = j 

                    blk4() 

                    TF = RadioButton23.Checked 

                    'TF = TF And (i > 237 Or j < 2 Or j > 77) 

                    TF = TF And (i > 238 Or j < 1 Or j > 78) 

                    If TF Or CheckBox19.Checked Then 

                        Dim lPen2aa As New Pen(Drawing.Color.FromArgb(105,  

                                                            200, 50, 0), 1) 

                        e.Graphics.DrawRectangle(lPen2aa, xx1, yy1, zm, zm)                

                                                  'draw border (entire case) 

                    End If 

                    Qx01center() 

                    If ((i + SclVvD / 2) / SclVvD = Int((i + SclVvD / 2) /  

                            SclVvD) And (j + SclVvD / 2) / SclVvD = Int((j +  
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                            SclVvD / 2) / SclVvD) Or SclVvD = 1) And  

                            (CheckBox20.Checked Or CheckBox31.Checked) Then  

                            'velocity vectors 

                        '***doing Eulerian reference by varying a relative  

                                                          horizontal velocity  

                        'New Relative (moving) Velocity Magnitude 

                        MagVel = ((Vx4(i, j, ttt, 0) - Vel3) ^ 2 + Vx4(i, j,  

                                                 ttt, 1) ^ 2) ^ 0.5 + 0.00001 

                        xv1 = Qx01r + 1.5 * SclVv * zm * (Vx4(i, j, ttt, 0) –  

                                                                 Vel3) / Vel2 

                        yv1 = Qy01r - 1.5 * SclVv * zm * Vx4(i, j, ttt, 1) /  

                                                                         Vel2 

                        xv2 = Qx01r + 3 * zm * (Vx4(i, j, ttt, 0) - Vel3) /   

                                                                       MagVel 

                        yv2 = Qy01r - 3 * zm * Vx4(i, j, ttt, 1) / MagVel 

 

                        Dim lPen4a As New Pen(Drawing.Color.FromArgb(200,  

                                                               255, 0, 0), 1) 

                        Dim lPen4b As New Pen(Drawing.Color.FromArgb(100,  

                                                             255, 150, 0), 1) 

                        Dim lPen4c As New Pen(Drawing.Color.FromArgb(200, 0,  

                                                                150, 255), 1) 

                        Dim cBrush As New  

                         SolidBrush(Drawing.Color.FromArgb(200, 255, 255, 0)) 

                        If CheckBox20.Checked Then 

                            e.Graphics.DrawEllipse(lPen4b, Qx01r - zm / 4,  

                            Qy01r - zm / 4, zm / 2, zm / 2) 'circle (blk 4) 

                        End If 

                        If MagVel < CvgEddy And CheckBox31.Checked Then 

                            e.Graphics.FillEllipse(cBrush, Qx01r - zm / 4,  

                            Qy01r - zm / 4, zm / 2, zm / 2) 'circle (blk 4) 

                        End If 

                        If MagVel * SclVv / 2 / Vel2 < 1 And  

                                                      CheckBox20.Checked Then 

                            e.Graphics.DrawLine(lPen4a, Qx01r, Qy01r, xv1,  

                                            yv1) 'draw scaled velocity vector 

                        Else 

                            If CheckBox20.Checked And Not CheckBox31.Checked  

                                                                         Then 

                                e.Graphics.DrawLine(lPen4c, Qx01r, Qy01r, 

                                              xv2, yv2) 'draw velocity vector 

                            End If 

                        End If 

                    End If 

                Next 

            Next 

        End If 

 

        If CheckBox22.Checked Then 'Contribution from point  

            ContFromPoint() 

        End If 

        If CFyn Or CFVyn Or CFSyn Or CheckBox21.Checked Or CheckBox22.Checked  

                                                                         Then 

            CFx = 0 : CFy = 0 

            CFVM = 0 : CFVx = 0 : CFVy = 0 

            dd = 2 * pi * rr / NQ / 4 

            ddr = dx * f 
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            For blk = 0 To 3 

                If blkbol01(blk) Then 

                    alfa = 5 * pi / 4 + blk * pi / 2 - dd / 2 / rr 

                    jj = NR - 1 

                    ‘VB reference located at left-top corner of the object 

                    For i = 0 To NQ - 1 

                        ii = i 

                        alfa = alfa + dd / rr 

                        'Pressure 

                        CFPijj = Vx(blk, i, jj, ttt, 3)  'Pressure  

                        CFPx1 = CFPijj * Math.Cos(alfa) 'Pressure in x (hor.  

                                       initial point (arrow to center) VBref) 

                        CFPy1 = -CFPijj * Math.Sin(alfa) 'Pressure in y (ver.  

                                       initial point (arrow to center) VBref) 

                        'Q contribution Pressure  

                        CFPQijj = QCP(blk, i, ttt)  'Q contribution  

                        CFPQx1 = CFPQijj * Math.Cos(alfa) 'Pressure in x 

                                 (hor. initial point (arrow to center) VBref) 

                        CFPQy1 = -CFPQijj * Math.Sin(alfa) 'Pressure in y  

                                 (ver. initial point (arrow to center) VBref) 

                        'Pressure force 

                        CFijj = -CFPijj * dd 'F/rho/zleng [m3/s2];  

                        CFx = CFx + CFijj * Math.Cos(alfa) 'Press. forces sum 

                        CFy = CFy + CFijj * Math.Sin(alfa) 

 

                        'Viscous Force 

                        '*****************FIRST taking the viscous force  

                                       between the first row and the boundary 

                        'Vt1 = -Vx(blk, i, jj, ttt, 0) * Math.Sin(alfa)  

                                                  'tangential component of Vx 

                        'Vt2 = Vx(blk, i, jj, ttt, 1) * Math.Cos(alfa)  

                                                  'tangential component of Vy 

                        '*****************SECOND taking the viscous force  

                               between the two first rows around the cylinder 

                        'Vt1 = -(Vx(blk, i, jj - 1, ttt, 0) - Vx(blk, i, jj,  

                        ttt, 0)) * Math.Sin(alfa) 'tangential component of Vx 

                        'Vt2 = (Vx(blk, i, jj - 1, ttt, 1) - Vx(blk, i, jj,  

                        ttt, 1)) * Math.Cos(alfa) 'tangential component of Vy 

                        '*****************THIRD APPROACH to diminish finite  

                              difference error from solver algorithm probably 

                        Vt1 = -Vx(blk, i, jj - 1, ttt, 0) * Math.Sin(alfa)  

                                                  'tangential component of Vx 

                        Vt2 = Vx(blk, i, jj - 1, ttt, 1) * Math.Cos(alfa)  

                                                  'tangential component of Vy 

                        Vt3 = Vt1 + Vt2 ' tangential velocity 

                        Vt4 = -Vt3 * Math.Sin(alfa) 'x component of  

                                      tangential velocity (hor. initial point  

                                      (arrow to center) VBref) 

                        Vt5 = Vt3 * Math.Cos(alfa) 'y component of tangential  

                                       velocity (ver. initial point (arrow to   

                                       center) VBref) 

 

                        'CFVijj3 = Vt3 * kV * dd / (ddr / 2) 'total viscosity  

                                                                        force 

                        'CFVijj4 = Vt4 * kV * dd / (ddr / 2) 'x viscosity  

                                       force (hor. initial point (arrow to  

                                       center) VBref) 
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                        'CFVijj5 = Vt5 * kV * dd / (ddr / 2) 'y viscosity  

                                       force (ver. initial point (arrow to  

                                       center) VBref) 

 

                        '*****************FIRST taking the viscous force  

                                       between the first row and the boundary 

                        'CFVijj3 = Vt3 * kV * dd / (ddrFiner(i) / 2) 'total  

                                       viscosity force 

                        'CFVijj4 = Vt4 * kV * dd / (ddrFiner(i) / 2)  'x  

                                       viscosity force (hor. initial point  

                                       (arrow to center) VBref) 

                        'CFVijj5 = Vt5 * kV * dd / (ddrFiner(i) / 2)  'y  

                                       viscosity force (ver. initial point         

                                      (arrow to center) VBref) 

                        '*****************FIRST a little bit more precise 

                        CFVijj3 = Vt3 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) / 4)  'total viscosity force 

                        CFVijj4 = Vt4 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) / 4)   'x viscosity force (hor.     

                                       initial point (arrow to center) VBref) 

                        CFVijj5 = Vt5 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) / 4)   'y viscosity force (ver.                        

                                       initial point (arrow to center) VBref) 

 

                        '*****************SECOND taking the viscous force  

                        between the two first rows around the cylinder 

                        'CFVijj3 = Vt3 * kV * dd / ddrFiner(i)  'total  

                                       viscosity force 

                        'CFVijj4 = Vt4 * kV * dd / ddrFiner(i)   'x viscosity  

                                       force (hor. initial point (arrow to  

                                       center) VBref) 

                        'CFVijj5 = Vt5 * kV * dd / ddrFiner(i)   'y viscosity  

                                       force (ver. initial point (arrow to  

                                       center) VBref) 

                        '*****************SECOND a little bit more precise 

                        'CFVijj3 = Vt3 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) / 2)  'total viscosity force 

                        'CFVijj4 = Vt4 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) / 2)   'x viscosity force (hor.  

                                       initial point (arrow to center) VBref) 

                        'CFVijj5 = Vt5 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) / 2)   'y viscosity force (ver.  

                                       initial point (arrow to center) VBref) 

 

                        '*****************THIRD directly the more precise 

                        CFVijj3 = Vt3 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) * 3 / 4)  'total viscosity force 

                        CFVijj4 = Vt4 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) * 3 / 4)   'x viscosity force  

                                       (hor. initial point (arrow to center)  

                        CFVijj5 = Vt5 * kV * dd / ((ddrFiner(i) + ddrFiner(i  

                                       + 1)) * 3 / 4)   'y viscosity force  

                                       (ver. initial point (arrow to center)  

                        CFVM = CFVM + CFVijj3 

                        CFVx = CFVx + CFVijj4 

                        CFVy = CFVy + CFVijj5 '(VB) 
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                        If CheckBox21.Checked Then 

                            xx30 = zm * (NQ / 2 + NQ / 4 * SclP *  

                                                             Math.Cos(alfa)) 

                            yy30 = zm * (NQ / 2 - NQ / 4 * SclP *  

                                                             Math.Sin(alfa)) 

                            If i = 0 Then 

                                CFPx2 = CFPx1 : CFPy2 = CFPy1 

                                xx40 = xx30 : yy40 = yy30 

                            End If 

                            xx10 = xx30 + zm * (CFPx1 * CFPscl * SclP)  

                                                           'Pressure line end 

                            yy10 = yy30 + zm * (CFPy1 * CFPscl * SclP) 

                            xx20 = xx40 + zm * (CFPx2 * CFPscl * SclP)  

                                                         'Pressure line begin 

                            yy20 = yy40 + zm * (CFPy2 * CFPscl * SclP) 

                            Dim lPen1Ref As New  

                                    Pen(Drawing.Color.FromArgb(255, 255, 255,                   

                                                                       0), 2) 

                            e.Graphics.DrawLine(lPen1Ref, xx30, yy30, xx40,  

                                                    yy40) 'circular reference 

                            Dim lPen1c As New Pen(Drawing.Color.FromArgb(155,  

                                                            50, 250, 250), 1) 

                            e.Graphics.DrawLine(lPen1c, xx10, yy10, xx20,  

                                                                        yy20) 

                            e.Graphics.DrawLine(lPen1c, xx10, yy10, xx30,  

                                                                        yy30) 

                            'e.Graphics.DrawLine(lPen1c, xx20, yy20, xx40,  

                                                                        yy40) 

                            CFPx2 = CFPx1 : CFPy2 = CFPy1 

                            xx40 = xx30 : yy40 = yy30 

                        End If 

 

                        If CheckBox22.Checked Then 'Q contribution from point  

                                                            on cylinder graph 

                            xxQ30 = zm * (NQ / 2 + NQ / 4 * SclP *  

                                                              Math.Cos(alfa)) 

                            yyQ30 = zm * (NQ / 2 - NQ / 4 * SclP *  

                                                              Math.Sin(alfa)) 

                            If i = 0 Then 

                                CFPQx2 = CFPQx1 : CFPQy2 = CFPQy1 

                                xxQ40 = xxQ30 : yyQ40 = yyQ30 

                            End If 

                            xxQ10 = xxQ30 + zm * (CFPQx1 * CFPscl * SclP) 'Q  

                                                       contribution line end 

                            yyQ10 = yyQ30 + zm * (CFPQy1 * CFPscl * SclP) 

                            xxQ20 = xxQ40 + zm * (CFPQx2 * CFPscl * SclP) 'Q  

                                                      contribution line begin 

                            yyQ20 = yyQ40 + zm * (CFPQy2 * CFPscl * SclP) 

                            Dim lPen1Ref As New  

                            Pen(Drawing.Color.FromArgb(255, 255, 255, 0), 2) 

                            e.Graphics.DrawLine(lPen1Ref, xxQ30, yyQ30,  

                                            xxQ40, yyQ40) 'circular reference 

                            Dim lPen1c As New Pen(Drawing.Color.FromArgb(155,  

                                                             250, 150, 0), 1) 

                            e.Graphics.DrawLine(lPen1c, xxQ10, yyQ10, xxQ20,  

                                                                       yyQ20) 

                            e.Graphics.DrawLine(lPen1c, xxQ10, yyQ10, xxQ30,  
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                                                                       yyQ30) 

                            CFPQx2 = CFPQx1 : CFPQy2 = CFPQy1 

                            xxQ40 = xxQ30 : yyQ40 = yyQ30 

                        End If 

                    Next 

                End If 

            Next 

            CFSx = CFx + CFVx 

            CFSy = CFy + CFVy 

            CF = Math.Sqrt(CFx ^ 2 + CFy ^ 2) 

            CFV = Math.Sqrt(CFVx ^ 2 + CFVy ^ 2) 

            CFS = Math.Sqrt(CFSx ^ 2 + CFSy ^ 2) 

            xx1 = zm * NQ / 2 ' cylinder center 

            yy1 = zm * (NR - NQ / 2) 

            xx2 = zm * (NQ / 2 - CFx * CFscl) 'Pressure force line end 

            yy2 = zm * (NR - NQ / 2 + CFy * CFscl) 

            xx3 = zm * (NQ / 2 - CFVx * CFscl) 'Viscous force line end  

            yy3 = zm * (NR - NQ / 2 + CFVy * CFscl) 

            xx4 = zm * (NQ / 2 - CFSx * CFscl) 'Sum force line end 

            yy4 = zm * (NR - NQ / 2 + CFSy * CFscl) 

            'before of this line all forces are in [m3/s2] 

            CFS = CFS / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless total  

                                                                     force 

            CF = CF / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless pressure  

                                                                     force 

            CFV = CFV / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless viscous  

                                                                     force 

            CFSx = CFSx / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless total  

                                                                     force 

            CFx = CFx / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless pressure  

                                                                     force 

            CFVx = CFVx / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless  

                                                             viscous force 

            CFSy = CFSy / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless total  

                                                                     force 

            CFy = CFy / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless pressure  

                                                                     force 

            CFVy = CFVy / 0.5 / 2 / rr / Vel2 ^ 2 'get dimensionless  

                                                             viscous force 

            If CFSyn Then 'total force 

                Dim lPen1c As New Pen(Drawing.Color.FromArgb(255, 50, 50,  

                                                                   50), 2) 

                Dim lPen1c2 As New Pen(Drawing.Color.FromArgb(255, 50, 50,  

                                                                   50), 1) 

                e.Graphics.DrawLine(lPen1c, xx1, yy1, xx4, yy4) 

                If Comp Then 'show components 

                    e.Graphics.DrawLine(lPen1c2, xx1, yy1, xx4, yy1) 

                    e.Graphics.DrawLine(lPen1c2, xx1, yy1, xx1, yy4) 

                    e.Graphics.DrawLine(lPen1c2, xx4, yy1, xx4, yy4) 

                    e.Graphics.DrawLine(lPen1c2, xx1, yy4, xx4, yy4) 

                End If 

                TextBox40.Text = Format(CFS, "#0.00") 

                TextBox56.Text = Format(CFSx, "#0.00") 

                TextBox59.Text = Format(CFSy, "#0.00") 

            End If 

            If CFyn Then 'pressure force 

                Dim lPen1a As New Pen(Drawing.Color.FromArgb(255, 255, 150,  
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                                                                   100), 2) 

                Dim lPen1a2 As New Pen(Drawing.Color.FromArgb(255, 255, 150,  

                                                                   100), 1) 

                e.Graphics.DrawLine(lPen1a, xx1, yy1, xx2, yy2) 

                If Comp Then 'show components 

                    e.Graphics.DrawLine(lPen1a2, xx1, yy1, xx2, yy1) 

                    e.Graphics.DrawLine(lPen1a2, xx1, yy1, xx1, yy2) 

                    e.Graphics.DrawLine(lPen1a2, xx2, yy1, xx2, yy2) 

                    e.Graphics.DrawLine(lPen1a2, xx1, yy2, xx2, yy2) 

                End If 

                TextBox38.Text = Format(CF, "#0.00") 

                TextBox58.Text = Format(CFx, "#0.00") 

                TextBox61.Text = Format(CFy, "#0.00") 

            End If 

            If CFVyn Then 'viscous force 

                Dim lPen1b As New Pen(Drawing.Color.FromArgb(255, 0, 0, 255),  

                                                                           2) 

                Dim lPen1b2 As New Pen(Drawing.Color.FromArgb(255, 0, 0,  

                                                                     255), 1) 

                e.Graphics.DrawLine(lPen1b, xx1, yy1, xx3, yy3) 

                If Comp Then 'show components 

                    e.Graphics.DrawLine(lPen1b2, xx1, yy1, xx3, yy1) 

                    e.Graphics.DrawLine(lPen1b2, xx1, yy1, xx1, yy3) 

                    e.Graphics.DrawLine(lPen1b2, xx3, yy1, xx3, yy3) 

                    e.Graphics.DrawLine(lPen1b2, xx1, yy3, xx3, yy3) 

                End If 

                TextBox39.Text = Format(CFV, "#0.00") 

                TextBox57.Text = Format(CFVx, "#0.00") 

                TextBox60.Text = Format(CFVy, "#0.00") 

            End If 

        End If 

        fff(ttt, 0) = CFS : fff(ttt, 1) = CFSx : fff(ttt, 2) = CFSy :  

                                        fff(ttt, 3) = CF : fff(ttt, 4) = CFx 

        fff(ttt, 5) = CFy : fff(ttt, 6) = CFV : fff(ttt, 7) = CFVx : fff(ttt,  

                                                                   8) = CFVy 

        PictureBox2.Visible = False 

        PictureBox2.Visible = True 

        PictureBox2.Refresh() 

    End Sub 

 

Conversion to the unique reference system 

    Sub blk0() 

        xx1 = zm * x1(ii, jj) / dx 

        yy1 = zm * (NR - y1(ii, jj) / dx) 

        xx2 = zm * x1(ii + 1, jj) / dx 

        yy2 = zm * (NR - y1(ii + 1, jj) / dx) 

        xx3 = zm * x1(ii + 1, jj + 1) / dx 

        yy3 = zm * (NR - y1(ii + 1, jj + 1) / dx) 

        xx4 = zm * x1(ii, jj + 1) / dx 

        yy4 = zm * (NR - y1(ii, jj + 1) / dx) 

    End Sub 

    Sub blk1() 

        xx1 = zm * NQ - zm * y1(ii, jj) / dx 
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        yy1 = zm * (NR - x1(ii, jj) / dx) 

        xx2 = zm * NQ - zm * y1(ii + 1, jj) / dx 

        yy2 = zm * (NR - x1(ii + 1, jj) / dx) 

        xx3 = zm * NQ - zm * y1(ii + 1, jj + 1) / dx 

        yy3 = zm * (NR - x1(ii + 1, jj + 1) / dx) 

        xx4 = zm * NQ - zm * y1(ii, jj + 1) / dx 

        yy4 = zm * (NR - x1(ii, jj + 1) / dx) 

    End Sub 

    Sub blk2() 

        xx1 = zm * NQ - zm * x1(ii, jj) / dx 

        yy1 = zm * (y1(ii, jj) / dx) 

        xx2 = zm * NQ - zm * x1(ii + 1, jj) / dx 

        yy2 = zm * (y1(ii + 1, jj) / dx) 

        xx3 = zm * NQ - zm * x1(ii + 1, jj + 1) / dx 

        yy3 = zm * (y1(ii + 1, jj + 1) / dx) 

        xx4 = zm * NQ - zm * x1(ii, jj + 1) / dx 

        yy4 = zm * (y1(ii, jj + 1) / dx) 

    End Sub 

    Sub blk3() 

        xx1 = zm * y1(ii, jj) / dx 

        yy1 = zm * (x1(ii, jj) / dx) 

        xx2 = zm * y1(ii + 1, jj) / dx 

        yy2 = zm * (x1(ii + 1, jj) / dx) 

        xx3 = zm * y1(ii + 1, jj + 1) / dx 

        yy3 = zm * (x1(ii + 1, jj + 1) / dx) 

        xx4 = zm * y1(ii, jj + 1) / dx 

        yy4 = zm * (x1(ii, jj + 1) / dx) 

    End Sub 

    Sub blk4() 

        xx1 = zm * NQ + zm * ii 

        yy1 = zm * (NQ - 1 - jj) 

    End Sub 

 

Drag and Lift pressure contributions from every point 

    Sub ContFromPointTotal() 

        For itQ = 0 To nt - 1 

            Me.Text = "Calculating Contribution from point (own)" & " " & itQ 

                                              + 1 & " of " & nt & " blk 0123" 

            For blkQ = 0 To 3 

                'For blkQ = 0 To 3 

                For jQ = 0 To NR - 2 'don't do in j=79 

                    For iQ = 0 To NQ - 1 

                        bl040 = blkQ : bl050 = iQ : bl090 = jQ 

                        ii = iQ : jj = jQ : ttt = itQ 

                        ContFromPoint0123() 

                        ContFromPointAll() 

                        DragLift() 

                        'Store results 

                        Vx(blkQ, iQ, jQ, itQ, 13) = CFxDL 'drag 

                        Vx(blkQ, iQ, jQ, itQ, 14) = CFyDL 'lift 

                        If itQ = 0 And blkQ = 0 And iQ = 0 And jQ = 0 Then 

                            u1min(13) = CFxDL : u1max(13) = CFxDL 

                            u1min(14) = CFyDL : u1max(14) = CFyDL 
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                        End If 

 

                        If CFxDL > u1max(13) Then u1max(13) = CFxDL : 

                                                  u1filtmax(13) = CFxDL 

                        If CFxDL < u1min(13) Then u1min(13) = CFxDL : 

                                                  u1filtmin(13) = CFxDL 

                        If CFyDL > u1max(14) Then u1max(14) = CFyDL : 

                                                  u1filtmax(14) = CFyDL 

                        If CFyDL < u1min(14) Then u1min(14) = CFyDL : 

                                                  u1filtmin(14) = CFyDL 

 

                    Next 

                Next 

            Next 

            Me.Text = "Calculating Contribution from point (own)" & " " & itQ 

                                                 + 1 & " of " & nt & " blk 4" 

            'fifth block 

            For i11 = 0 To NL - 1 

                For i = 0 To NQ - 1 

                    bl450 = i11 : bl490 = i 

                    ii = i11 : jj = i 

                    ContFromPoint4() 

                    ContFromPointAll() 

                    DragLift() 

                    'Store results 

                    Vx4(i11, i, itQ, 13) = CFxDL 'drag 

                    Vx4(i11, i, itQ, 14) = CFyDL 'lift 

                    If CFxDL > u1max(13) Then u1max(13) = CFxDL :  

                                              u1filtmax(13) = CFxDL 

                    If CFxDL < u1min(13) Then u1min(13) = CFxDL :  

                                              u1filtmin(13) = CFxDL 

                    If CFyDL > u1max(14) Then u1max(14) = CFyDL : 

                                              u1filtmax(14) = CFyDL 

                    If CFyDL < u1min(14) Then u1min(14) = CFyDL :  

                                              u1filtmin(14) = CFyDL 

 

                Next 

            Next 

        Next 

        Me.Text = Ptxt6 

    End Sub 

 

    Sub ContFromPoint() 

        'check the area and Q from the point 

        If Qx02point <= 80 Then 'block 0, 1, 2 or 3 (Point data) 

            ii = bl050 : jj = bl090 

            ContFromPoint0123() 

        Else 'block 4                          (the point) 

            bl450 = Int(Qx05) - NQ 

            bl490 = NQ - 1 - Int(Qy05) 

            ii = bl450 : jj = bl490 

            ContFromPoint4() 

        End If 

        'Contribution from point 

        ContFromPointAll() 

    End Sub 
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    Sub ContFromPoint0123() 

        blk040_0123() 

        Qx01C = (xx1 + xx2 + xx3 + xx4) / 4 

        Qy01C = (yy1 + yy2 + yy3 + yy4) / 4 

        xa1 = (xx1 + xx2) / 2 : xa2 = (xx2 + xx3) / 2 : xa3 = (xx3 + xx4) / 2  

                                                      : xa4 = (xx4 + xx1) / 2 

        ya1 = (yy1 + yy2) / 2 : ya2 = (yy2 + yy3) / 2 : ya3 = (yy3 + yy4) / 2  

                                                      : ya4 = (yy4 + yy1) / 2 

        ha2 = ((xa4 - xa2) ^ 2 + (ya4 - ya2) ^ 2) ^ 0.5 

        'perpendicular distance: 

        ha1 = Math.Abs((xa4 - xa2) * (ya2 - ya3) - (xa2 - xa3) * (ya4 - ya2))  

                                  / ((xa4 - xa2) ^ 2 + (ya4 - ya2) ^ 2) ^ 0.5 

        ha1 = ha1 + Math.Abs((xa4 - xa2) * (ya2 - ya1) - (xa2 - xa1) * (ya4 –  

                            ya2)) / ((xa4 - xa2) ^ 2 + (ya4 - ya2) ^ 2) ^ 0.5 

        Q01 = (dx / zm) ^ 2 * ha1 * ha2 'Area [m2] 

        Q01 = Q01 / (2 * rr) ^ 2 ' dimensionless area 

        Q03 = Vx(bl040, bl050, bl090, ttt, 5) 'Q 

        Q03 = Q03 / Vel2 ^ 2 * (2 * rr) ^ 2 ' dimensionless Q 

    End Sub 

 

    Sub ContFromPoint4() 

        blk4() 

        Qx01C = xx1 + zm / 2 

        Qy01C = yy1 + zm / 2 

        Q01 = dx ^ 2  'Area [m2] 

        Q01 = Q01 / (2 * rr) ^ 2 ' dimensionless area 

        Q03 = Vx4(bl450, bl490, ttt, 5) 'Q from OpenFoam 

        Q03 = Q03 / Vel2 ^ 2 * (2 * rr) ^ 2 ' dimensionless Q 

    End Sub 

 

    Sub ContFromPointAll() 

        For blk = 0 To 3 

            For i = 0 To NQ - 1 

                ii = i : jj = 79 

                blk000 = blk : blk0123() 

                Qx01p = (xx1 + xx2 + xx3 + xx4) / 4  

                Qy01p = (yy1 + yy2 + yy3 + yy4) / 4 

                Qrr = dx * Math.Sqrt((Qx01p / zm - Qx01C / zm) ^ 2 + (Qy01p /   

                             zm - Qy01C / zm) ^ 2) 'distance to the point [m] 

                Qrr = Qrr / (2 * rr) ' dimensionless radius 

                QCP(blk, i, ttt) = -1 / pi * Q03 * Math.Log(1 / Qrr) * Q01  

                      '1/pi*Q*ln(1/Qrr)*dA non-D Q contribution from point 

            Next 

        Next 

    End Sub 

 

    Sub DragLift() 

        CFxDL = 0 : CFyDL = 0 

        dd = 2 * pi * rr / NQ / 4 

        ddr = dx * f 

        For blk = 0 To 3 

            If blkbol01(blk) Then 

                alfa = 5 * pi / 4 + blk * pi / 2 - dd / 2 / rr 

                jj = NR - 1 

                For i = 0 To NQ - 1 

                    ii = i 

                    alfa = alfa + dd / rr 
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                    'Q contribution Pressure  

                    CFPQijj = QCP(blk, i, ttt)  'Q contribution  

                    CFPQx1 = CFPQijj * Math.Cos(alfa) 'Pressure in x (hor. 

                                    initial point (arrow to center) VBref) 

                    CFPQy1 = -CFPQijj * Math.Sin(alfa) 'Pressure in y (ver.  

                                    initial point (arrow to center) VBref) 

                    'Q DL force 

                    CFijj = -CFPQijj * dd / 0.5 / 2 / rr 'F/rho/zleng []; 

                    CFxDL = CFxDL + CFijj * Math.Cos(alfa) 'Q DL forces sum 

                    CFyDL = CFyDL + CFijj * Math.Sin(alfa) 

                Next 

            End If 

        Next 

        CFDL = Math.Sqrt(CFxDL ^ 2 + CFyDL ^ 2) 

    End Sub 
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Appendix C. VerFlow-V.01: User’s Manual 

VerFlow-V.01 is a customized program developed to work quantitatively and qualitatively with 

specific OpenFoam simulation results of periodic laminar flow around a cylinder. The name 

VerFlow-V.01 includes the Spanish word “ver” which means “see” in English since the author is 

from Ecuador, where Spanish is his primary language. This is only considered an alpha release 

of where it is anticipated that future versions be published with enhanced capabilities. Comments 

are welcomed. 

This User’s Manual gives a complete guide through the customized characteristics of VerFlow-

V.01. Although some of these characteristics will require entering into the code, most of them do 

not. 

The program runs in Windows environment and was written in Visual Basic 2008. 

Window zones 

When running the executable file of VerFlow-V.01, the user will see an interactively Graphical 

User Interface (GUI) where four zones are defined as shown in Figure C.1. 

 

Figure C.1 VerFlow-V.01 window zones  
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A brief description of each zone is summarized here and the detail is shown later. 

Zone 1: contains two color legend bars (sometimes only one color legend bar is visible as shown 

in Figure C.1) and some additional controls are also available: two check boxes to hide zones 2 

or 3 and one check box to capture image sequence frames. This zone is always visible. 

Zone 2: contains six tabs at the top. Each tab display particular information or different tools on 

this zone. This zone can be hidden by deselecting a box on zone 1 giving additional space to 

zone 4. When zone 2 is not visible, zone 3 is moved to the left over its space. This characteristic 

allows the user to work on screens with lower resolutions. 

Zone 3: contains three tabs at the top which include quantitative tools. This zone can also be 

hidden from zone 1. 

Zone 4: contains a customized qualitative instantaneous graph according with the settings 

established on the other zones. This zone can be extended when the window is maximized and 

also over zones 2 and 3 where they become invisible. 

Zone 1 

This zone has two purposes: to show the color legend bars and to manage special additional 

controls,  e.g. image capture, etc. A graphic explanation is given in Figure C.2. 

The blue-green legend bar is displayed at the left of zone 1, while, not always visible, the red-

yellow legend bar appears at the middle right of this zone. The blue-green legend bar 

corresponds to the Variable V. and the red-yellow legend bar corresponds to the Overlapped 

Variable O.V. 

The user can select the option to display contour lines under the tab Adjust in zone 2. Contour 

lines can be incremented and displaced to coincide with specific values using the controls in the 

Adjust tab. Both color legend bars have also drawn a horizontal line, longer than contour lines, 

which coincides with the zero value of the variable. 

A list of the variables is given under the Variables tab in zone 2 section (see Table C.1). The 

actual value is the value of the Variable V. or Variable O.V. at the instantaneous mouse location 
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while the mouse cursor “point” is observed moving within zone 4. The actual value is 

simultaneously observed dynamically as a line on the color legend in zone 1 as a function of the 

point location on zone 4. The two color legend bars supports a “filter” characteristic, which is 

realized by selecting limits on the color legend in zone 1. Adjusting the limits on the color legend 

also limits the visible range of data observed in zone 4. This selection can also be accomplished 

using the Adjust tab in zone 2. Applicable to both variables, the selection of a range of visible 

values, below the maximum and above the minimum, can be accomplished by dragging the 

mouse pointer over the desired region in the color legend bar while pressing the left mouse 

button. When adjusting, a rectangle is observed with red lines which indicates the selection on 

the color legend bar and “filters” the data observed in zone 4. 

The rectangle at the top right corner of this zone remains hidden until the user activates the 

option Vel.Vectors (Velocity vectors) in the Settings tab of zone 2. The vertical scroll bar 

controls the transition from a static to a moving reference frame. 

 

Figure C.2 VerFlow-V.01 color legend bar  

The capture image sequence option shown in Figure C.2 is used to capture automatically an 

image sequence, which is stored in the Sequence folder, while the option cycle is also selected in 
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the Settings tab. This is similar to the Capture button in the Initial tab in zone 2 but for image 

sequence instead of individual pictures. 

Two checked boxes, located at the bottom right corner of zone 1, define if zones 2 and 3 are 

visible or not. When zone 2 is invisible, zone 3 is moved to the left occupying its space. The 

advantage of using these two boxes is that there is more available space for zone 4, especially 

useful when looking for details in the flow in combination with other options customized in 

VerFlow-V.01. 

Initial tab in zone 2 

In Zone 2, under the tab Initial, basic initial instructions are given (see Figure C.3). 

The information is initially stored in OpenFoam files and must be read by VerFlow-V.01 by 

pressing the button Read. It takes some time for the computer to read and store internally the 

numerical OpenFoam “data”. While reading, in the top of the windows it is displayed how the 

reading process advances by messages, i.e. Reading velocity field, Reading pressure, Reading Q, 

Reading vorticity field and Calculating Qbb (own). Qbb (second invariant of the velocity 

gradient) is evaluated by VerFlow-V.01 in a region downstream for validation purposes when 

compared with Q given by OpenFoam. 

 

Figure C.3 Initial tab in Zone 2  
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Figure C.4 shows how the application appears when it finished reading the “data”. The variable 

displayed by default is the Streamwise velocity Ux (horizontal velocity). 

The color legend bar in zone 1 shows the variable under the title, V. as Ux. The horizontal line in 

the color legend bar indicates the zero value for the variable V. 

As the user moves the mouse pointer over the velocity field (or the visible variable) on zone 4, a 

simultaneous dynamic response appears as a line moving vertically in the color legend bar, 

which corresponds to the value for the variable V. at the instantaneous mouse position in zone 4. 

 

Figure C.4 Streamwise velocity field (default) displayed in zone 4 after reading 

OpenFoam numerical simulated data includes velocities, vorticities, pressure and the second 

invariant of the velocity gradient, 𝑄, in the entire domain. Although the problem is in two 

dimensions (2D), the velocity in the 𝑧 direction and the vorticities in 𝑥 and 𝑦 are read by 

VerFlow-V.01, since a constant zero everywhere in these variables confirms part of the 

simulation results calculated by OpenFoam which always work in 3D (even 2D problems). 

The button Capture, allows the user store the instantaneous displayed image as a jpg file in a 

folder named Sequence. The name of the file corresponds to actual frame number minus one, so 
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that if the first frame is displayed when Capture is pressed, 000.jpg will be stored in the 

Sequence folder. Using this technique images for all frames follow the order given by the name 

of each file over one cycle and from this image sequence an animation can be generated. 

 

Figure C.5 Exit alert  

The button Exit is used to finish the execution of the program. An alert message appears to 

ensure the user wants to close the application. This message is displayed in Figure C.5. 

Variable tab in zone 2 

When the Variable tab is selected in zone 2, the user can select the Variable (V.) and the 

Overlapped Variable (O.V.) from the corresponding option buttons. By default, both variables 

are initially set as Ux. Also, the overlapped variable is completely invisible and its transparency 

can be controlled under the Adjust tab in zone 2. 

 

Figure C.6 Selection of variables  
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Selecting the pressure per unit density, 𝑃/𝑟𝑜, as the Variable (V.) and the second invariant of 

the velocity gradient, 𝑄, as the Overlapped Variable (O.V.), zone 2 looks as shown in Figure 

C.6. 

Table C.1 shows the list of variables, a general description and observations for each one. 

Variable Description Observations 

Ux Streamwise Velocity (horizontal)   

Uy Vertical Velocity   

Uz z velocity must be zero 

U Velocity magnitude   

VortX Vorticity in x must be zero 

VortY Vorticity in y must be zero 

VortZ Vorticity in z   

Vort Vorticity magnitude   

P/rho Pressure per unit density   

Q Second invariant of the velocity gradient   

Q drag Drag contributions from every cell calculation required 

Q lift Lift contributions from every cell calculation required 

Table C.1 Variables  

The variables Q drag and Q lift are calculated using the Q drag-lift button in the Q drag-lift & 

more tab in zone 3, but the user must be aware that this operation takes about 1 minute per each 

frame and the operation should not be interrupted. 

Adjust tab in zone 2 

Figure C.7 shows zone 2 when the Adjust tab is selected. 

The Variable V. and the Overlapped Variable O.V. are displayed in zone 4 when their values are 

between the limits adjusted by the user in the Adjust tab in zone 2. The selection of these limits is 

called the “filter” in VerFlow-V.01. Filters can also be selected from zone 1 by a directly drag 

the mouse pointer on the color legend bar while pushing the left mouse button. 
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In the Adjust tab in zone 2, the user can also choose a level of transparency. The horizontal scroll 

bar used for transparency, shows Variable V. in the default position which is at the left and the 

Overlapped Variable O.V. when its position is changed to the right. This allows the user to 

simultaneously observe two variables interactively as the animation is running. 

 

Figure C.7 Adjust tab in zone 2  

 

Figure C.8 Envisioning negative pressure and positive 𝑄 example 
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Contour lines can be displayed in zones 1 and 4 when the check box Insert is checked in the 

Lines label. The two horizontal scroll bars inside the Lines label allow the user to increase or 

decrease by a factor of two the number of contour lines uniformly distributed on the color legend 

bar. The two horizontal scroll bars, in the Displace Lines label, change the relative location of 

the contour lines up and down. This change is useful when the user requires a specific value to 

coincide with one contour line. 

An example shows the negative pressure as the variable V. and positive 𝑄 as the Overlapped 

Variable O.V. (see Figure C.8). The transparency level is approximately 0.3, which means that 

pressure is more intense in color. The number of contour lines in the color legend bar is 4 for the 

pressure field but the rectangle with red boundaries indicates the filter on this variable which 

includes negative and zero values. The contour lines were interactively selected so that one 

contour line would coincide with zero pressure. The number of contour lines for 𝑄 is 64 and the 

corresponding rectangle marks limits on this region, e.g. to positive values including zero, which 

again is a “black” (it really looks gray for the transparency level) contour line. 

D and non-D tabs in zone 2 

Figure C.9 and C.10 shows the D and non-D tabs in zone 2 respectively.  D refers to dimensional 

and non-D to dimensionless values of each variable.  

 

Figure C.9 Dimensional values for an instantaneous mouse pointer location in zone 4 
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In the table located at the right of Figures C.9 and C.10, Actual refers to the instantaneous 

properties at the mouse pointer location in zone 4 while Min and Max refer to the minimum and 

maximum numerical values. In Figure C9, units are specified at the right for each variable. 

These two tabs allow the user to interpret a dynamic quantitative and qualitative response in 

zone 2 of the values corresponding to the instantaneous location of the mouse pointer in zone 4. 

The quantitative response is the numerical data while the qualitative response is given by the 

lines in the gray zone at the left. Minimum values of each variable are located to the left of the 

gray zone while maximum to the right of the gray zone as indicated by Min and Max. Also 

drawn are dark lines (gray or brown) of zero values for each variable while the actual value is 

represented in purple. 

 

Figure C.10 Dimensionless values for an instantaneous mouse pointer location in zone 4 

The actual Q drag and Q lift in Figure C.10 are zero because it is required first to run the Q drag-

lift code to get these contributions to the drag and lift from the velocity field (see Q drag-lift tab 

in zone 3 and Sections 4.4.1 and 4.4.2 for more details). 

The velocity in the z direction and vorticities in x and y are zero as indicated also in Table C.1, 

since only two dimensional “data” is evaluated and OpenFoam is in general, a three dimensional 

problem where one cell exists in the z direction, but data in the z direction is ignored. 
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Settings tab in zone 2 

In Figure C.11 the Settings tab is shown where four principal labels appear: Time, Zoom, View 

and Move. 

The Time label contains a horizontal scroll bar and a Cycle check box. The horizontal scroll bar 

allows the user to select the frame in the simulation, a specific time which appear instead of Time 

below the horizontal scroll bar. The Cycle check box, when checked, activates an automatic 

sequential change of the time frames showing an interactive animation on zone 4 (this animated 

result generates dynamic quantitative (numerical) and qualitative (images) that relate to all other 

dependent tabs and zones). 

 

Figure C.11 Labels in the Settings tab in zone 4 

The View label contains three check boxes. The first, marked as Grid, draws the grid on the flow 

region. The second, which has a horizontal scroll bar at the right, is useful to detect stagnation 

points (horizontal scroll bar set to the left) or zones (horizontal scroll bar set to the right), which 

are represented in yellow. The third, marked as Vel. Vectors, is used to select a representation of 

the velocity field as vectors over zone 4. The Vel. Vectors check box does not work alone, it 

interacts with the Scale scroll bar and the Density scroll bar below, and also with the vertical 

scroll bar that appears in zone 1, which changes from static to moving frame of reference. The 

Scale scroll bar changes the size of the vectors and “Scaled” velocity vectors are drawn in red 
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while “non-Scaled” velocity vectors are drawn in cyan. This distinction is completely necessary 

to envision the velocities in zones of interest, like the wake, where they are in the order of 0.01 

(dimensionless). The Density scroll bar allows the selection of more or less cells in the grid for 

the represented velocity vectors. The vertical scroll bar with Sta and Mov labels in zone 1 can be 

used to change gradually from the static to the moving frames of reference and viceversa.  

The Zoom label has a horizontal scroll bar used to magnify the image size displayed in zone 4 for 

a proper view. It is required also to work in the Move label to set an adequate image location. 

Five small buttons are located below the horizontal bar in the Zoom label. These buttons are used 

to set directly specific combinations of image magnification and location that the user should 

find useful. 

 

Figure C.12 Settings tab example. Note the effect of checking the box for stagnation points in the View label. 

The Move label has a horizontal scroll bar, a vertical scroll bar and a button. The horizontal 

scroll bar moves the image in zone 4 horizontally while the vertical scroll bar moves the image 
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vertically. The button is used to set a position right below zone 1 regardless the magnification set 

in the Zoom label. 

As a general recommendation, use the buttons in the Zoom label and after adjusting the image 

location, if required, use the scroll bars in the Move label. 

An example of the use of the Settings tab is shown in Figure C.12. The difference between the 

left and right graphs in this figure was accomplished simply by checking the stagnation check 

box in the View label. 

Force on cylinder tab in zone 3 

 

Figure C.13 Representation of pressure and viscous forces over 𝑄 
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Figure C.13 shows a Dimensionless forces label containing four check boxes which specify the 

calculations selected by the user in relation with the pressure and viscous forces on the cylinder. 

The equations implemented in VerFlow-V.01 for this purpose are described in Section 3.3 and 

the results are discussed in Section 4.1. 

The quantitative data is shown in a table at the right of the check boxes and indicates the 

dimensionless coefficients as their drag and lift components and also the total for pressure forces, 

viscous forces and for the sum. 

The color representation of each force is labeled at the left side of the corresponding check 

boxes: orange for pressure forces, blue for viscous forces and black for the sum. Forces are 

qualitatively represented as lines pointing to the cylinder center. The fourth check box, labeled as 

Show components, draws a rectangle which gives a visual representation of the drag and lift 

components. 

Under the Scale label at the right in the Force on cylinder tab in zone 3, there is a horizontal 

scroll bar labeled as Force. Using this scroll bar, the user can change the size of the vectors for a 

convenient representation. 

All forces are evaluated dynamically when the Cycle check box is selected in the Settings tab and 

the user can envision and explore the flow combining all the desired capabilities included in the 

program. When the program is processing a huge number of internal calculations over the entire 

domain and a proper view of each frame has been reached, the frames do not appear soon as 

desired. In this case it is better to use that information by automatically capturing an image 

sequence as discussed before in zone 1 and generating an animation using other software 

available such as Windows Movie Maker or Quick Time. This is applicable to all the customized 

capabilities introduced in VerFlow-V.01, since all variables can be superimposed giving a 

simultaneous multivariable representation. These superimposed multivariable animations are 

complex in the sense that they approach a “cognitive-limit” of the researcher. In this case 

qualitative use of images to analyze simulation results is insight, were as traditionally graphics 

has been used for presentation by implementing a less complex format. 

In Figure C.14 the pressure distribution on the cylinder from the OpenFoam simulation “data” is 

shown when the check boxes in the Dimensionless forces label have been unchecked (this is 
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done to avoid distracting information not necessary in this discussion) and the Pressure on 

cylinder check box in the Pressure label has been checked. The positive pressure points outward 

the cylinder (from its boundary) and the negative pressure points towards the cylinder center 

(from its boundary). Results can be envisioned by quadrants which correspond to each block 

surrounding the cylinder according with Figure 2.2. These quadrants are selected in the four 

check boxes around the small circle in the Pressure label of the Force on cylinder tab at the 

right. The special distribution of these check boxes is directly related with the top, bottom, left 

and right quadrants. This is also applicable to the Contribution from point check box option 

below the Pressure on cylinder check box. 

 

Figure C.14 Representation of pressure distribution from OpenFoam numerical “data” 

The user can magnify the pressure distribution representation under the Pressure scroll bar in the 

Scale label, which affects the size of the circle (always centered at the cylinder center) and the 

pressure distribution for a proper view. 
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Figure C.15 shows how the Point effect on the cylinder boundary given in Section 4.3 is obtained 

in VerFlow-V.01. In this case the Pressure on cylinder check box was unchecked (to avoid 

unnecessary information in this discussion). The equation introduced in the code in VerFlow-

V.01 for this calculation is 3.84a and is applied to each cell on the cylinder boundary. The user 

must select the Contribution from point check box in the Pressure label. 

 

Figure C.15 Representation of pressure distribution originated from an arbitrary cell (enlighten in red) 

The Pressure scroll bar in the Scale label and the four check boxes for the selection of the left, 

right, top and bottom quadrants in the Pressure label are still applicable as was explained for the 

Pressure on cylinder check box. 
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The selection of the point which generates such pressure distributions is realized by a left mouse 

button click applied directly on the represented flow in zone 4. Any point in the domain can be 

selected except in the first row on the cylinder boundary which generates an error because points 

P and Q are in the same location in one of the calculations along the cylinder boundary. For 

locations close to the cylinder boundary, the user can click directly inside the cylinder and the 

program automatically sets a cell in the third row from the cylinder boundary and in the direction 

specified by a line from the cylinder center to the point where the mouse click was initiated. The 

third row is selected to avoid the boundary problem and at the same time to be close enough to 

the cylinder boundary. 

The positive pressure is again represented outward from the cylinder boundary and the negative 

pressure towards the center from the cylinder boundary. 

 

Figure C.16 Integration options for a rectangular subdomain 
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Figure C.16 shows how the integration for a rectangular domain, described in Section 4.2.2, is 

set in the Integration tab in zone 3. The user must select the Integrate check box in the Pressure 

at a point label in the Integration tab. The point location is defined by clicking (left mouse 

button) the point in the domain in zone 4 when the Point option button in the Pressure at a point 

label has been selected. The rectangle is defined by dragging (hold-down left mouse button) a 

region in the domain of zone 4 when the Rectangle option button in the Pressure at a point label 

has been selected. 

Figure C.17 shows how the integration for the entire domain, described in Section 4.2.3, is 

realized in VerFlow-V.01. The Integrate check box and the Point at entire domain option button 

in the Pressure at a point label must be selected. The point location is directly selected by a left 

mouse button click directly over the represented flow in zone 4. 

For both Figures C.16 and C.17, the individual integral components are represented qualitatively 

and quantitatively in the Integration tab in zone 3. 

The qualitative representation is envisioned as a wide (left to right edge of image) orange 

horizontal line which is the zero reference pressure. The OpenFoam pressure at the specific 

selected point is envisioned as a shorter width blue line under the label “P”. The integration 

result is given at the right, again by a blue line, under the label “+”. The surface integral is 

represented by a red line under the label “Q”. Note that this integral is realized on the filtered 

visible region selected in zone 1. The contour integral components are represented by the gray 

and black lines at each boundary under the labels “L”, “R”, “T”, “B” and “Cy” corresponding to 

the left, right, top, bottom and cylinder boundaries. The Scale scroll bar, in the Pressure at a point 

label, allows the user to set a proper magnification of this representation. There are six check 

boxes at the bottom and six check boxes at the top of the graph in the Integration tab in zone 3. 

The six check boxes at the bottom are used to highlight the region of integration and also 

projected lines from the corresponding boundaries to the selected point in zone 4, this is only a 

visual effect. The six check boxes at the top of the graph filter the internal calculations so that the 

numerical results are filtered and the unselected integral components are not considered in the 

sum. 
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The quantitative dimensionles results are shown at the right in the Integration tab. The ”Pressure 

(P) at a Point (blue)” is the result from OpenFoam for the pressure at the selected point. The 

”Sum (+) of integrals (blue)” is the result from the integration and sum of all selected 

contributions specified in the six check boxes at the top of the graph in the Integration tab. The 

difference between the two numerical results is marked as “diff.”. All integral components are 

detailed in the “Surface Integral (Q) (red)” and in the “Contour Integral” table. 

 

Figure C.17 Integration options for the entire domain 

The available options for the Q drag-lift & more tab are given in Figure C.18. 

The user can export the history “data” of horizontal (streamwise) velocity for a specific location, 

forces or pressure along the cylinder boundary as *.txt files from the buttons Export U, Export F 

and Export P in the Q drag-lift & more tab in zone 3. These *.txt files can be used to create other 

plots. The horizontal velocity is extracted from a location which can be changed from the code. 

The default location for the Export U button is the cell (50,20) in block 1, which is located in the 
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wake as shown in Figure 2.9. The forces for the Export F button are all nine components 

obtained in the Force on cylinder tab in zone 3. The pressure along the cylinder boundary (from 

OpenFoam result) is exported by VerFlow-V.01 in the counter clockwise order beginning in the 

cell (0,79) in block 0, which is located 45° counterclockwise from the horizontal radial line at 

the front of the cylinder. These buttons were used to extract information for the Fourier analysis 

in Sections 2.7.2 and 4.1.3, and for comparison with experimental data in Section 4.7. 

 

Figure C.18 Q drag-lift & more tab options 

 

Figure C.19 Representation of Q drag after calculations realized on Q drag-lift & more tab 
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The Q drag-lift button in the Q drag-lift & more tab in zone 3 initiates the internal calculations 

described in Sections 4.4.1 and 4.4.2. A Note is included: it takes around 1 min per time step and 

the user must be aware that this operation should not be interrupted. So for a simulation 

containing 39 frames or time steps, this calculation will last about 40 minutes. 

Once the calculation is finished, this variable information becomes available under the Variable 

tab in zone 2 and can be selected from there. Minimum and maximum limits will also appear in 

the D and non-D tabs in zone 2. All functions described in the previous tabs work with these two 

new variables: Q drag and Q lift. Figure C.19 shows an example of a customized representation 

of Q drag which includes the velocity vectors and stagnation points represented simultaneously. 

Note that the non-D tab includes the information of this variable. 
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Appendix D. Solution to Poisson Equation in 2D 

(Contributed by Clinton Dancey) 

In 2D one of Green’s identities is 

   𝑢∇2𝑣 − 𝑣∇2𝑢 

𝕊

𝑑𝐴 =   𝑢
𝜕𝑣

𝜕𝑛
− 𝑣

𝜕𝑢

𝜕𝑛
 

ℒ

𝑑𝑙 
(D.1) 

where 𝕊 is the area enclosed by ℒ. 𝑢 and 𝑣 are assumed to be continuous through second derivatives. 

Following Sokolnikoff & Redheffer (Sokolnikoff & Redheffer, 1966) consider the following limit: 

lim
𝑎→0

 
𝑓(𝑄)

𝑎𝑐
ℒ1

𝑑𝑙 

where ℒ1 is a circle of radius 𝑎, centered at 𝑃 and 𝑄 is a variable point on ℒ1, 𝑓 is a continuous function 

and 𝑐 is a constant. 

 
𝑓(𝑄)

𝑎𝑐
ℒ1

𝑑𝑙 =  
𝑓(𝑃)

𝑎𝑐
ℒ1

𝑑𝑙 +  
𝑓 𝑄 − 𝑓(𝑃)

𝑎𝑐
ℒ1

𝑑𝑙 = 𝐼1 + 𝐼2 

𝐼1 =  
𝑓(𝑃)

𝑎𝑐
ℒ1

𝑑𝑙 =
𝑓(𝑃)

𝑎𝑐
2𝜋𝑎      

 
 
 

 
 

    

2𝜋𝑓 𝑃    for    𝑐 = 1
    

   0            for    𝑐 < 1

∞           for    𝑐 > 1

  

 𝐼2 ≤
2𝜋𝑎

𝑎𝑐
max 𝑓 𝑄 − 𝑓(𝑃)  

If     𝑐 = 1     𝐼2 → 0     as     𝑎 → 0     since 𝑓 is continuous 

If     𝑐 < 1     𝐼2 → 0     as     𝑎 → 0 

 ∴                 
𝑓(𝑄)

𝑎𝑐
ℒ1

𝑑𝑙 =        

2𝜋𝑓 𝑃    for    𝑐 = 1
       

0            for    𝑐 < 1

  (D.2) 

Now in Equation (D.1) let  𝑣 = 𝑤 + ln  
1

𝑟
 = 𝑤 + ln 𝑟−1  
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Let the region be inside ℒ and outside ℒ1, with the enclosed region 𝕊 (outward normal 𝑛 shown). 

 

Figure D.1 Region definitions 

So, 

 

  𝑢∇2 𝑤 + ln 𝑟−1  −  𝑤 + ln 𝑟−1  ∇2𝑢 

𝕊

𝑑𝐴

=   𝑢  
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
 −  𝑤 + ln 𝑟−1  

𝜕𝑢

𝜕𝑛
 

ℒ

𝑑𝑙

+   𝑢  
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
 −  𝑤 + ln 𝑟−1  

𝜕𝑢

𝜕𝑛
 

ℒ1

𝑑𝑙 

(D.1’) 

We note: ∇2𝑣 = ∇2𝑤 + ∇2 ln 𝑟−1  , but it can be shown that ∇2 ln 𝑟−1  = 0 in 2D. 

So, ∇2𝑣 = ∇2𝑤 + 0 in this case. 

On ℒ1: 

 

Figure D.2 Circular zone outside the region 

𝜕𝑣

𝜕𝑛
=
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
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𝜕

𝜕𝑛
= −

𝜕

𝜕𝑟
 

𝜕 ln 𝑟−1 

𝜕𝑛
= −

𝜕 ln 𝑟−1 

𝜕𝑟
= +

𝜕 ln 𝑟 

𝜕𝑟
=

1

𝑟
=

1

𝑎
     on     ℒ1 

∴       
𝜕𝑣

𝜕𝑛
 
ℒ1

=  𝜕𝑤

𝜕𝑛
 
ℒ1

+
1

𝑎
 

So we have on ℒ1: 

  𝑢  
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
 −  𝑤 + ln 𝑟−1  

𝜕𝑢

𝜕𝑛
 

ℒ1

𝑑𝑙 =  𝑢  
𝜕𝑤

𝜕𝑛
+

1

𝑎
 

ℒ1

𝑑𝑙 −   𝑤 + ln 𝑟−1  
𝜕𝑢

𝜕𝑛
ℒ1

𝑑𝑙 

Assuming 𝑢, and 𝑤, and 
𝜕𝑤

𝜕𝑛
 are continuous: 

 𝑢
𝜕𝑤

𝜕𝑛
ℒ1

𝑑𝑙 → 0     as      𝑎 → 0      and, 

 
𝑢

𝑎
ℒ1

𝑑𝑙 → 2𝜋𝑢 𝑃      as      𝑎 → 0      from Equation  D. 2 , so 

lim
𝑎→0

  𝑢  
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
 −  𝑤 + ln 𝑟−1  

𝜕𝑢

𝜕𝑛
 

ℒ1

𝑑𝑙 = 2𝜋𝑢 𝑃 − lim
𝑎→0

  𝑤 + ln 𝑟−1  
𝜕𝑢

𝜕𝑛
ℒ1

𝑑𝑙 

where, 

lim
𝑎→0

 𝑤
𝜕𝑢

𝜕𝑛
ℒ1

𝑑𝑙 = 0 

So, 

lim
𝑎→0

  𝑢  
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
 −  𝑤 + ln 𝑟−1  

𝜕𝑢

𝜕𝑛
 

ℒ1

𝑑𝑙 = 2𝜋𝑢 𝑃 − lim
𝑎→0

 ln 𝑟−1 
𝜕𝑢

𝜕𝑛
ℒ1

𝑑𝑙 

Noting 𝑑𝑙 = 𝑎 𝑑𝜃, the last term can be written: 

lim
𝑎→0

  𝑎 ln 𝑎−1  
𝜕𝑢

𝜕𝑛
 
ℒ1

𝑑𝜃
2𝜋

0

= lim
𝑎→0

   𝑎 ln 𝑎  𝜕𝑢

𝜕𝑛
 
ℒ1

𝑑𝜃
2𝜋

0
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But 

𝑎 ln𝑎 → 0     𝑎𝑠     𝑎 → 0   

And, 

lim
𝑎→0

  𝑢  
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
 −  𝑤 + ln 𝑟−1  

𝜕𝑢

𝜕𝑛
 

ℒ1

𝑑𝑙 = 2𝜋𝑢 𝑃  

 

Then: 

  𝑢∇2𝑤 −  𝑤 + ln 𝑟−1  ∇2𝑢 

𝕊

𝑑𝐴 =   𝑢  
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
 −  𝑤 + ln 𝑟−1  

𝜕𝑢

𝜕𝑛
 

ℒ

𝑑𝑙 + 2𝜋𝑢 𝑃  

Or, 

2𝜋𝑢 𝑃 =   𝑢∇2𝑤 −  𝑤 + ln 𝑟−1  ∇2𝑢 

𝕊

𝑑𝐴 −  𝑢  
𝜕𝑤

𝜕𝑛
+
𝜕 ln 𝑟−1 

𝜕𝑛
 −  𝑤 + ln 𝑟−1  

𝜕𝑢

𝜕𝑛
 

ℒ

𝑑𝑙 

Now let 𝑤 = 0 to obtain: 

2𝜋𝑢 𝑃 = − ln 𝑟−1 ∇2𝑢

𝕊

𝑑𝐴 −  𝑢
𝜕 ln 𝑟−1 

𝜕𝑛
− ln 𝑟−1 

𝜕𝑢

𝜕𝑛
 

ℒ

𝑑𝑙 

Now let ∇2𝑢 = −2𝜋Γ, where Γ x, y  is continuous, to obtain finally 

2𝜋𝑢 𝑃 = 2𝜋 Γ ln 𝑟−1 

𝕊

𝑑𝐴 −  𝑢
𝜕 ln 𝑟−1 

𝜕𝑛
− ln 𝑟−1 

𝜕𝑢

𝜕𝑛
 

ℒ

𝑑𝑙 

Which is the solution to Poisson’s equation 𝑢 𝑥,𝑦 . 

Applied to the equation for pressure, i.e.: 

∇2𝑝 = −𝜌𝑢𝑖,𝑗𝑢𝑗 ,𝑖  

−2𝜋Γ = −𝜌𝑢𝑖,𝑗𝑢𝑗 ,𝑖  

or, 
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Γ =
𝜌𝑢𝑖 ,𝑗𝑢𝑗 ,𝑖

2𝜋
 

 ∴             2𝜋𝑝 𝑃 = 2𝜋 
𝜌𝑢𝑖,𝑗𝑢𝑗 ,𝑖

2𝜋
ln 𝑟−1 

𝕊

𝑑𝐴 −  𝑝
𝜕 ln 𝑟−1 

𝜕𝑛
− ln 𝑟−1 

𝜕𝑝

𝜕𝑛
 

ℒ

𝑑𝑙 

∴             
𝑝 𝑃 

𝜌
=

1

2𝜋
 𝑢𝑖 ,𝑗𝑢𝑗 ,𝑖 ln 𝑟−1 

𝕊

𝑑𝐴 −
1

2𝜋𝜌
  𝑝

𝜕 ln 𝑟−1 

𝜕𝑛
− ln 𝑟−1 

𝜕𝑝

𝜕𝑛
 

ℒ

𝑑𝑙 

where 𝑝 𝑃  is evaluated at the point in question, all other quantities in 𝕊 and on ℒ are field points, with 

𝑟 =  𝑃 − 𝑄 , the distance between 𝑃 and the field point. 

 

 


