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Three Visual Methods: Envisioning Gradients.
Cognitive Visual Data Compression Method ©

Compress large graphical-tabular data sets into a visual 3D gradient format

Envisioning gradients requires a review of our fundamental concepts of a gradient. Gradients are
associated with a change in a property. For example if a student was given a task of measuring
temperature in a room and recorded that the temperature changed 5 degrees, the question is raised -- how
did the temperature change? Did the temperature change with respect to a change in position (X,y,z) in the
room or was the position held constant and this temperature changed with respect to time, t? It is implicity
understood that gradients of properties are associated with a change in an independent variable, e.g. space
or time. When continuous functions are used to describe this gradient we refer to the function by
describing the shape as ... "it goes like" linear, exponential, etc. It is possible that properties could
simultaneously change with respect to space (x,y,z) (three dimensions) (3D) and time, t, the fourth
dimension (4D). The idea that any property (scalar, vector, or tensor) can change with respect to space
and time is fully developed in continuum mechanics as a comoving derivative. The discussion here
focuses on envisioning gradients of scalar properties in one dimension (1D), two dimensions (2D), and
three dimensions (3D).

Visual gradients in 1D: envisioned as curved lines

Our idea of a gradient in one dimension (x) requires us to think in two dimensions where the function,
f(x), is shown as a curved line in a two dimensional plane, Fig. 1. The scalar function, f(x), is drawn along
the vertical axis as an dependent variable and the independent variable, X, is drawn in the horizontal
direction which creates a two dimensional plane. Here the gradient of the scalar function, f(x), changes
only with respect to the x-axis. This increase is graphically shown by the red arrow shown in Fig. 1. The
idea of a change in the property, function f(x), with respect to a corresponding change in the independent
variable, x, is fundamental to our concept of a gradient. The mathematical statement of this same idea in
the limit is the definition of the derivative which is shown as a line tangent to the curved line in Fig. 1.
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Figure 1. Mathematical definition and graphical representation of one dimensional scalar functions and
their gradients envisioned in a two dimensional plane.

Visual gradients in 2D: envisioned as curved sufaces

Similarly our idea of a gradient in two dimensions, x and y, requires us to think in three dimensions where
the function, f(x,y) is shown as a curved surface in Fig. 2. The scalar function, f(x,y), is drawn along the
vertical axis as a dependent variable and the two independent variables (x,y) are drawn as two axis both
perpendicular to f(x,y) axis and also perpendicular to each other. Here the function, f(x,y) is observed to
decrease both along the x-axis and the y-axis independently which creates a plane tangent to the curved
surface and this change is graphically represented by the red arrow pointing downward in Fig. 2. The
mathematical equivalence to this tangent plane is the equation for a gradient of the function, f(x,y), which
is shown in the bottom portion of Fig. 2. NOTE!!! the curved surface, although drawn in three
dimensions, is a two dimensional function. There is no z-axis shown here as a third independent variable,
but rather the vertical axis is replaced with a dependent function, f(x,y), in Fig. 2. All to often these raised
curved surfaces are referred to as three dimensional functions, because they are envisioned in three
dimensional space.

£ ﬁx"” lane t t to surf
(X15M) plane tangent to surface
‘F at | x=x4
(Xﬁ'ﬂ?(s)/‘)q b, 8 ,/ Y=Y,
TC(X: 2 Y+ 0Y) 9 ' s curved surface is a
F(x\-\-hxjx-my)‘ Sz~ function, f(xy), of
-7~ _two dimensions
"’v, (”2Dll)
"3 ‘/‘-, i
/ ¢ ;/
[:““r",/
0
=y T % Y4y
(O;O> '_>' Pl '@‘ > y
N \‘ B
N /(%) ¥ray)
]
%
\\\
Vx,wy (+ax,Y,) (X, £0, Y, +0Y)
of(x, —  of(x, —
il oy = Fplly)
0 0
X =y Y [x=x,

Figure 2. Mathematical definition and graphical representation of two dimensional scalar functions and
their gradients envisioned in three dimensional space.

Visual Gradients in 3D: envisioned as curved volumes

Our idea of a gradient in three dimensions (X, y, and z) would require us to think in four dimensions
where taking the gradient of the function, f(x,y,z) would be represented by a curved volume. However
drawing a geometric shape of a three dimensional function, f(x,y,z), for all possible values of x, y, and z
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is not possible. This would also require that a fourth axis for f(x,y,z) be drawn perpendicular to the x, y,
and z axes in Fig. 3, which is also not possible. However the gradient of a scalar funtion, f(x,y,z), can be
evaluated at a point (x;,y;,z;) in the limit as Ax, Ay, and Az go to zero. It is also possible to visually

represent a single value of the function, f(x,y,z) as a collection of points near (x;,y;,z;) that would map

out a curved isosurface in 3D space. This method will be discussed in the next section, Envisioning Pattern
Function Extraction.
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Figure 3. Mathematical definition and graphical representation of three dimensional scalar functions and
their gradients envisioned in three dimensional space. Envisioning three dimensional gradients as curved
volumes is not possible. However the gradient of a scalar funtion, f(x,y,z), can be evaluated at a point
(X1,¥1,2;) mathematically.

It is possible however to draw gradients for three dimensional functions, f(x,y,z), using orthogonal
intersecting planes constructed from small multiples, Tufte [1], of a family of one dimensional functions,
f(x), shown in Fig. 1. Compression of this function, f(x), is extended to include a family of curves with
respect to a second independent variable, f(x,T). This method is developed in the next section where all of
these 1D functions are compressed into three planes and observed as color gradients. Drawing functions as
color gradients is not new. However the conceptual link of color gradients to a compressions of 1D
functions using Tufte's small multiple idea provides an insightful method of describing gradients in 3D. If
three orthogonal planes intersect at a common point, e.g. (X;,y1,z;) and move in the neighborhood of this

point (possibly oscillate) along their respective axes normal to each plane, gradients in 3D can be
envisioned using this idea of a compressed 1D format. Because this matches our intuitive (mathematical)
concept of a 3D gradient, this compression scheme is refered to as a cognitive visual data compression
(CVDC) method.

Conversion of 1D family-of-curves into visual 3D gradients
(Development of the Cognitive Visual Data Compression (CVDC) Method)

This method requires a uniformly distributed data set. This requirement is not unusual with the advent of
supercomputers and computer automated laboratory equipment. With such equipment results can be

8/23/06 3:15 PM



Cognitive Visual Data Compression Method ©

4 of 10

http://www.sv.vt.edu/classes/ESM4714/methods/CogVizCmp.html

constructed in uniformly spaced arrays where no data are eliminated simply because generating these data
is no longer tedious. For example in computer tomography systems such detail can become a life saving
requirement. But here we create our uniform mesh from a complex function. Such complex functions are
common in dynamic systems. To continue the discussion a function of three independent variables (x,T,t)
is created:
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which can be shown to approach zero in the limit as T approaches 30. Typically these functions are shown
as a family of curves. We are very comfortable with this format because we are first taught to imagine
functions as shapes (curved lines or surfaces), Figs. 1 and 2. A line tangent to a curve is the derivative and
the area under that same curve is the integral of the function. Let's convert a 1D function from a
family-of-curves format into a compressed parametric space. We start by arbitrarily selecting four figures,
as shown below in Fig. 4, what Tufte [1] would call small multiples. Each figure represents a function
F(x,T) at a single instant in time, t, that contains a family of curves each at a different time period, T.
Because T approaches zero in the limit as T approaches 30 only a few curves are shown together with the
27th curve which is observed to be near zero as expected. Except for such limiting trends it is difficult to
understand how this function behaves until we draw at least a few curves as shown below. With this
format our view is limited to a collection of about four to thirty figures total, because this represents a
range of figures that can fit on a standard printed page. These same small multiples of thirty figures can be
viewed as an animation. Below we show a minimum of four figures.
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Figure 4. Small multiple of F(x,T,t) where only five curves are shown in each figure, since this function
tends to zero as T approaches 30. For comparison a total of 30 figures can viewed as an upper limit that
can fit on a standard printed page.

Such complex functions are common to many dynamic systems. When solutions are "chaotic" we have an
excellent example of how even simple graphs assist us in understanding functions by observing patterns
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that would first appear to be totally random or chaotic. This complexity motivates us to view a larger
number of curves in each figure.

The next figure, Fig. 5, demonstrates that a family of 30 curves in each figure not only represents an
visual limit in our ability to view data in this format but reveals additional information assumed absent in
the previous figure, Fig. 4. In fact we might assume that such an instability would most likely occur in the
upper right region where there appears to be more variation with time. However the largest gradient in
F(x,T,t) is unexpectedly observed in the lower left region at time, t=18 and disappears at later times in Fig.
5. This can be more clearly seen if all 30 figures at each time step are compared on one page. These same
small multiples of thirty figures can be viewed as an animation.
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Figure 5. Small multiple of F(x,T,t) where an instability occurs unexpectedly near t=18 as t approaches
30. This gradient in time is more clearly seen if all thirty figures for each time step are plotted on one

page.

Let's say that for the function F(x,T,t) we are interested in observing a total of 300 time steps (300 figures)
with 300 time periods, T, curves in each figure. This would be a total of 90,000 1D curves. Obviously this
would result in an incomprehensible blur of curves in each figure. Such a format would be useless to the
observer.

A typical approach to this problem would be to determine a priori what information to present and what
information to avoid. This process of eliminating irrelevant data is a tedious, if not inaccurate, process
where we typically assume trends in complex analytic functions, experimental, or numerical simulation
data. Each individual has their own unique, if not ambiguous, way of doing this. This process of
simplifying is also motivated in order to organize data for presentation. To avoid this ambiguity we
propose to compress all 90,000 curves into a single space without eliminating any data. Such an approach,
if possible, transcends using graphics for presentation and enables the observer to use graphics for analysis
and discovery. This method would also allow insightful comparisons within the compressed format. Can
this be done in general?

We start by arbitrarily taking the 8th and 30th time slice from the small multiple figure. We start here
because a family of 30 curves in a single figure is obviously getting "too busy" and we believe this
presentation format represents an upper limit. But we want more than 30 figures, let's say n-figures, where
each figure contains a family of m-curves.

We proceed first by compressing the 30 curves in Fig. 5 at t=8 and show that this method can be extended
to m=300. We start this compression process by placing a color bar next to the left most figure shown in
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Fig. 6. Next we pick an arbitrary value of x and find the corresponding value of the function F(x). But we
continue moving to the left and observe the corresponding color for F(x). We take that color and map it
back onto the line. We continue this coloring process by mapping color onto the entire line. Now the
color along the line and the shape of the line contain redundant information, hence we can remove the
shape but keep the color and move the colored flat line vertically downward to the figure below without
losing information. Obviously we can continue this process and easily move all 30 curves into the same
space without confusion. This method should also work for 300 lines. It would not be possible to show
the same information as 300 shapes in the traditional family-of-curves format.
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Figure 6. Compression Scheme for F(x,T,t)

Functions compressed into such formats are not new. We often see these "color plots" in literature and give
little thought to why we find these figures useful nor are most of us aware of their functional relationship
to a 1D family-of-curves format. This functional equivalence of color-shape-function allows us to visually
generalize the functional visual method even further. For the same reason we can compress m-curves into
a 2-D plane, we can also compress n-figures into a 3-D structure by vertically stacking each figure as a
2-D plane shown at the lower right of Fig. 6. It is now reasonable to claim that if there are "1" points for x,
"m" points for T, and "n" points for t, then we can compress (1 x m x n ) pieces of data into a compressed
visual format that is superior to the traditional 1D family-of-curves format. We now select a visual tool
that will allow us to sort through this compressed visual format. This can be simply accomplished by
interactively moving the horizontal colored x-T plane, shown at the lower right of Fig. 6, vertically
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upward with increasing time and stopping at any arbitrary time for comparison. In Fig. 6 we captured the
1st, 8th, and 30th time plots where the lower values (purple) have been erased in each plane to aid the
observer in comparing how the pattern, hence the function, changes with time. Although useful, this
method nevertheless reveals little new information about our complex function. Again we return to using
graphics to PRESENT what we already functionally understand. In this case our images simply represent
an alternate interesting way to present many 1D functions into a compressed space but perhaps not very
revealing.

However if we choose the vertical x-t plane and move this colored plane from the left to the right and
observe how this function changes as shown in Fig. 7. Obviously these new colored patterns represent the
same function but now the pattern is drawn without prior thought. For most people this new image creates
an insightful if not revealing experience. After experimenting with several investigators using this method
on a variety of data sets (analytic, experimental, and numerical), the response was very interesting. In all
cases this function was not thought of before (a priori) and typically the investigator enthusiastically
proceeded with this new method operating on other functions or data sets. What appears to be new
information in the other planes shown in Fig. 7 is the visual equivalent to our idea of a gradient of a scalar
function. In its simplest form such a gradient can be constructed as a 1D quantity, where we fix a value
for T and t and proceed to track how F(x,T,t) changes along a line parallel to the x-axis. But in Fig. 7 we
observe gradients for an entire range of T and t. Unlike Figs. 1 and 2, it is not necessary to mathematically
specify a single point in each plane, since the gradient for each of the three planes applies for all points in
that plane. When all three planes are combined, gradients in three dimensions (3D) have been
approximated from a collection ("compression") of numerous 1D curved lines. Stacked planes in Fig. 7
approximate color gradient changes corresponding to movement. Hence our idea of a gradient in 1D
extends graphically to representing gradients in 3D. Note, this technique can be used for any arbitrary
function.

Gradient of a three dimensional scalar function F(x,T,t)
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Figure 7. 3D gradient of a scalar function visualized when color patterns change with moving orthogonal
planes.

Further investigation reveals that uncompressing the x-t xplane would be equivalent to redrawing 300
figures with 300 different curves in each figure where t and T are interchanged within the traditional 1D
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family-of-curves format. This TEDIOUS task of redrawing 90,000 curves reduces to a much simpler (if
not revealing) visual method of moving and observing changing patterns <-> functions as we move the
x-t plane through various values for T.

Cognitive Patterns

The reason why this visual method is revealing in most investigations can now be simply explained by the
same cognitive mechanism described by Richard Friedhoff's explanation of visual experiments [2]
conducted by psychologist Donald Michie. Namely, most people tend to exchange arithmetic calculations
(functions) with visual patterns. An excellent example is to show all possible combinations of three

integers (1,2,3,4,5,6,7,8,9) that add to 15 without repeating integers, Fig. 8. What could again be a
TEDIOUS task is made simple with the following pattern, but try this exercise first without the pattern.
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>

Figure 8. Simple Cognitive Patterns

In some cases adding color to such functional patterns aids us in this cognitive intuitive process of
understanding the origin of functions (i.e. fractals). Interestingly this same functional pattern of numbers
can be reduced to a simple tic-tac-toe pattern, Fig 8.

The important point is that we all tend to exchange complex if not tedious functional operations with
patterns. With these patterns we can make comparisons that would otherwise go undetected even if these
functions are written in their traditional mathematical script (equations), simple graphs, or tabular format.
This same point is made by Edward Tufte[1] when he describes William Palyfair's efforts (1759 -1823) to
complement (not replace) functions shown in tabular format with a more comparative set of graphs.
Comparison of even simple functions in graphical format is cognitively superior to the tabular format but
lacks the accuracy. This is demonstrated by Tufte in Fig. 9 below.
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Figure 9. From E.R. Tufte [1], "The Visual Display of Quantitative Information."

This emphasis on accuracy and precision kept simple graphs from scientific archival journals for some
150 years, although comments have been made that this latency in publishing graphics could have been
influenced more by the printing technology of the times. Obviously scientists and engineers routinely use
both today when appropriate. Perhaps our recent (1985 - 2005) improvements in graphic technology has
prompted yet other choices in how we explore and present our complex functions and massive data sets.
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This chronology of envisioning scientific information is summarized in Fig. 10.
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Figure 10. Chronology of envisioning scientific information

Richard Friedhoff [2] also points out that this relationship between functions and visual patterns is
fundamental to the way we create our functions to begin with. For example J.W.Gibbs, J.C. Maxwell and
others have made comments to support this claim but only mathematical script (equations) or simple
graphs can be used to communicate these ideas to others. Hence the original thought that created these
functions is not communicated although this very initial process is what inspired Maxwell to create clay
and plaster models of Gibb's "visual mental model" of the thermodynanmic properties of water. This point
is discussed by Tom West [3] in brief article on the "Return to Visual Thinking".

Because we think before we draw a pattern that represents a function, this cognitive process has become
unidirectional. This cognitive connection between thinking and then drawing is inherently implicit to the
point that we do not realize how unidirectional this process has become until we, for example, return to
Fig. 7 and select a plane where the computer draws either the x-t or t-T planes and we realize that the
reciprocal could also be true: patterns can come before thinking about the functions, hence, we have the
opportunity to discover functions from patterns. This cognitive mechanism between functions and
patterns does not presuppose the order. Which comes first is an irrelevant question. As investigators and
instructors we can use both: for presentation (thought first then pattern) and for investigation (pattern first
and then thought). If this thought-then-pattern cognitive mechanism were truly unidirectional then
computer graphics could only be used for presentation.

Returning to Fig. 7 we see that the original 90,000 curves can now be shown in yet two more planes,
hence, we have an additional 180,000 curves making a total of 270,000 curves to think about. Of course
present graphic technology is not limited to m=300 and n=300. Hence we can work with even larger and
more massive data sets.

It first "appears" that we can only use this method for a single scalar function. It would not be possible to
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observe more then one color gradient (scalar-function) at a time if we are confined to observe how color
(function) changes in a moving plane. But we can invoke other graphic features that can allow us to
include more then one function into the same parametric space. Hence we have the opportunity to visually
explore multiple functional relationships if each function has the same basis (parameter space). But before
we generalize our method to more then one function, we provide some simple, hopefully instructive,
examples of investigating single functions in parametric space using CVDC method.

One closing comment before we proceed to specific examples. Keep in mind that as we go through these

examples, the usefulness of this cognitive visual approach is not limited to a particular application. Hence
we believe this to be a general methodology.

Two Case Studies Using the CVDC Method: Parametric Design:

1. Choose a Squadron of Pilots: Experimental Data
2. Material Property Selection: Analytic Function.
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